M0rtzz.top

May 26, 2024

ZZU-RoboCup环境配置

关于Ubuntu18.04/20.04安装后的一系列环境配置过程的总结

==Updating(更新博客链接:https://blog.csdn.net/M0rtzz/article/details/136060074)...==

ZZU-SR的同学配置环境前可以给我发邮件:[email protected]


本文所有用到的文件打包供大家下载(不含代码)【==Updating==】:

链接:

https://pan.baidu.com/s/1PgmWHKl8oyX_cWYx_uZJrg?pwd=zwz4

提取码:

zwz4

--来自百度网盘超级会员v4的分享

1-注意

刚进入系统一段时间,系统会通知更新到新版本系统(Ubuntu18.04),选择否,之后会询问是否更新系统组件(大概400mb),选择是。

阻止软件更新弹窗:

打开终端输入:

sudo chmod a-x /usr/bin/update-notifier

将关机时间从90秒换为5秒:

打开终端输入:

sudo gedit /etc/systemd/system.conf

将:

#DefaultTimeoutStopSec=90s

改为:

DefaultTimeoutStopSec=5s

保存退出,打开终端输入:

sudo systemctl daemon-reload

打开终端输入:

gedit ~/.bashrc
# 在最后(WARNING:如果安装了Anaconda3,需要加在__conda_setup之前)加入如下代码段:# 显示git分支function customizePrompt(){    local none='\[\033[00m\]'  # 重置所有属性到默认状态    local green='\[\033[0;32m\]'   # 绿色,用于用户名和主机名    local user_at_host="${green}\[\033[1m\]\u@\h${none}"  # 用户名和主机名显示为绿色并加粗    local blue='\[\033[0;34m\]'   # 蓝色,用于当前工作目录    local git_branch_color='\[\033[1;43;37m\]' # 黄色背景,白色字体,用于git分支    local command_prompt='$' # 命令提示符        if [ $UID -eq 0 ]; then        command_prompt='#'    fi    local working_directory="${blue}\[\033[1m\]\w${none}"  # 当前工作目录显示为蓝色并加粗    # 使用__git_ps1函数来显示当前git分支,使用自定义的颜色    echo "${user_at_host}:${working_directory}\$(__git_ps1 \" ${git_branch_color}[%s]${none} \")${command_prompt} "} export PS1="$(customizePrompt)"# 复制上一个命令到系统剪切板,sudo apt install xselfunction copyLastCommand(){    # fc获取最后执行的命令,echo发送给xsel复制到剪切板    # -nl以列表形式显示命令历史,但不包括命令编号,-1只获取最近一条命令    echo -n $(fc -nl -1) | xsel --clipboard --input}# 创建一个别名,若与你的其他软件包内置命令冲突,请自行更换别名alias clc="copyLastCommand"

之后保存退出

source ~/.bashrc

这样就可以更清晰的显示git分支~

2-更换国内源

sudo gedit /etc/apt/sources.list

将原本的注释掉,在最下方加入:

# 中科大源(Ubuntu 18.04)deb https://mirrors.ustc.edu.cn/ubuntu/ bionic main restricted universe multiverse  deb-src https://mirrors.ustc.edu.cn/ubuntu/ bionic main restricted universe multiversedeb https://mirrors.ustc.edu.cn/ubuntu/ bionic-security main restricted universe multiverse  deb-src https://mirrors.ustc.edu.cn/ubuntu/ bionic-security main restricted universe multiversedeb https://mirrors.ustc.edu.cn/ubuntu/ bionic-updates main restricted universe multiverse  deb-src https://mirrors.ustc.edu.cn/ubuntu/ bionic-updates main restricted universe multiversedeb https://mirrors.ustc.edu.cn/ubuntu/ bionic-backports main restricted universe multiverse  deb-src https://mirrors.ustc.edu.cn/ubuntu/ bionic-backports main restricted universe multiverse## Not recommended  # deb https://mirrors.ustc.edu.cn/ubuntu/ bionic-proposed main restricted universe multiverse  # deb-src https://mirrors.ustc.edu.cn/ubuntu/ bionic-proposed main restricted universe multiverse
# 中科大源(Ubuntu 20.04)  deb https://mirrors.ustc.edu.cn/ubuntu/ focal main restricted universe multiverse  deb-src https://mirrors.ustc.edu.cn/ubuntu/ focal main restricted universe multiversedeb https://mirrors.ustc.edu.cn/ubuntu/ focal-security main restricted universe multiverse  deb-src https://mirrors.ustc.edu.cn/ubuntu/ focal-security main restricted universe multiversedeb https://mirrors.ustc.edu.cn/ubuntu/ focal-updates main restricted universe multiverse  deb-src https://mirrors.ustc.edu.cn/ubuntu/ focal-updates main restricted universe multiversedeb https://mirrors.ustc.edu.cn/ubuntu/ focal-backports main restricted universe multiverse  deb-src https://mirrors.ustc.edu.cn/ubuntu/ focal-backports main restricted universe multiverse## Not recommended  # deb https://mirrors.ustc.edu.cn/ubuntu/ focal-proposed main restricted universe multiverse  # deb-src https://mirrors.ustc.edu.cn/ubuntu/ focal-proposed main restricted universe multiverse

或(寻找属于自己的发行版):

https://mirrors.ustc.edu.cn/repogen/

sudo apt update

anaconda镜像源(~/.condarc):

channels:  - defaultsshow_channel_urls: truedefault_channels:  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2custom_channels:  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud  msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud  bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud  menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud  pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud  simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud  deepmodeling: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud  nvidia: https://mirrors.cernet.edu.cn/anaconda-extra/cloud  envs_dirs:  - /home/m0rtzz/Program_Files/anaconda3/envs

3-设置/home文件夹下为英文

export LANG=en_US
xdg-user-dirs-gtk-update

编辑选择右边的Update Names

11860bd995624609b10076f25fc108fb.png

之后执行以下语句:

export LANG=zh_CN
reboot

勾选不要在次询问我,并选择保留旧的名称

560bffa1f8fd4255a9bec1f2be43efcd.png

4-禁用Nouveau驱动

sudo gedit /etc/modprobe.d/blacklist.conf

输入

blacklist nouveauoptions nouveau modeset=0

保存后关闭,打开终端,输入:

sudo update-initramfs -u
reboot

5-安装Nvidia驱动(有可能会损坏系统,如果损坏可以重装并看看网上的其他教程,除了这种安装方法还有其他安装方法,自行上网了解)

打开终端,输入:

sudo apt install gcc g++ make zlib1g
sudo ubuntu-drivers devices

image-20240219202632909

寻找带有recommended的版本,输入

sudo apt install nvidia-driver-your_version nvidia-settings nvidia-prime

(your_version是你的版本号)

sudo apt update
sudo apt upgrade
reboot

验证版本

nvidia-smi

image-20240219202426153

6-cuda安装:

https://developer.nvidia.com/cuda-toolkit-archive

选择和上一步nvidia-smi显示的cuda版本对应的进行安装,官方有教程

安装好之后打开终端输入

gedit ~/.bashrc

在最后输入

# cudaexport LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda/lib64export PATH=${PATH}:/usr/local/cuda/binexport CUDA_HOME=/usr/local/cuda  #cuda的软连接库,可以设置多版本共存指向

保存后关闭,打开终端,输入:

source ~/.bashrc

接下来验证cuda版本:

nvcc --version

image-20240219202216276

安装成功!

7-cudnn安装:

https://developer.nvidia.com/rdp/cudnn-archive

官方安装教程(选择合适版本的==NVIDIA cuDNN Installation Guide==):

https://docs.nvidia.com/deeplearning/cudnn/archives/index.html

tar -xvf cudnn-linux-x86_64-8.x.x.x_cudaX.Y-archive.tar.xzsudo cp cudnn-*-archive/include/cudnn*.h /usr/local/cuda/include sudo cp -P cudnn-*-archive/lib/libcudnn* /usr/local/cuda/lib64 sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*

验证是否安装成功

cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

image-20240206155459623

8-安装ROS(有些图忘记截了)

①ROS-melodic

导入Key

sudo gpg --keyserver 'hkp://keyserver.ubuntu.com:80' --recv-key C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654
sudo gpg --export C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654 | sudo tee /usr/share/keyrings/ros.gpg > /dev/null

设置中科大源

sudo sh -c 'echo "deb [signed-by=/usr/share/keyrings/ros.gpg] https://mirrors.ustc.edu.cn/ros/ubuntu $(lsb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.list'
sudo apt update
sudo apt install ros-melodic-desktop-full
echo "source /opt/ros/melodic/setup.bash" >> ~/.bashrcsource ~/.bashrc
sudo apt install python-rosdep python-rosinstall python-rosinstall-generator python-wstool build-essential
sudo apt install python3-pip

使用阿里镜像源加速pip下载:

sudo pip3 install rosdepc -i https://mirrors.aliyun.com/pypi/simple/
sudo rosdepc initrosdepc update
sudo chmod 777 -R ~/.ros/
roscore

52b0561164a34d3ea62b74322abe50bc.png


②ROS-noetic

导入Key

sudo gpg --keyserver 'hkp://keyserver.ubuntu.com:80' --recv-key C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654
sudo gpg --export C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654 | sudo tee /usr/share/keyrings/ros.gpg > /dev/null

设置中科大源

sudo sh -c 'echo "deb [signed-by=/usr/share/keyrings/ros.gpg] https://mirrors.ustc.edu.cn/ros/ubuntu $(lsb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.list'
sudo apt update && sudo apt install ros-noetic-desktop-full
echo "source /opt/ros/noetic/setup.bash" >> ~/.bashrcsource ~/.bashrc
sudo apt install python3-rosdep python3-rosinstall python3-rosinstall-generator python3-wstool build-essential
sudo apt install python3-pip

使用阿里镜像源加速pip下载:

sudo pip3 install rosdepc -i https://mirrors.aliyun.com/pypi/simple/
sudo rosdepc initrosdepc update
sudo chmod 777 -R ~/.ros/
roscore

image-20240219203852347


再新建两个终端,分别输入

rosrun turtlesim turtlesim_node
rosrun turtlesim turtle_teleop_key

rosrun turtlesim turtle_teleop_key所在终端点击一下任意位置,然后使用↕↔小键盘控制,看小海龟会不会动,如果会动则安装成功

c40128bd8c5245a48d386c21ba465449.png

9-安装opencv-3.4.16和opencv_contrib-3.4.16(Ubuntu18.04),Ubuntu20.04请装opencv-4.2.0及其扩展模块:

虽然使用cv_bridge时某些shared object有可能和ROS自带的opencv-3.2.0版本冲突,但实测安装3.2.0对cuda的兼容性太差导致无法使用深度相机,所以安装官网最近更新过的OpenCV3.4.16

==经尝试多版本Ubuntu和OpenCV,装Ubuntu20.04,ROS noetic和OpenCV4.2.0及其扩展模块才能解决将彩色图像转换为网络所需的输入Blob后前馈时抛出的(raised OpenCV exception,error: (-215

failed)等等)。下方OpenCV3的安装步骤仅供参考,OpenCV4.2.0的cmake命令及注意事项在本小节最后!==

①OpenCV3的安装步骤:

git clone -b 3.4.16 https://gitcode.com/mirrors/opencv/opencv.git opencv-3.4.16
cd opencv-3.4.16
git clone -b 3.4.16 https://gitcode.com/mirrors/opencv/opencv_contrib.git opencv_contrib-3.4.16

安装所需依赖库,打开终端,输入:

sudo add-apt-repository "deb http://security.ubuntu.com/ubuntu xenial-security main"sudo apt updatesudo apt install libjasper1 libjasper-dev
sudo apt install build-essential cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev python-dev python-numpy libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libdc1394-22-dev liblapacke-dev checkinstall
sudo apt install liblapacke-dev checkinstall

进入opencv-3.4.16文件夹,打开终端,输入:

mkdir build
cd build

接下来编译安装,注意此命令的OPENCV_EXTRA_MODULES_PATH=后边的路径是你电脑下的绝对路径,请自行修改

cmake -D CMAKE_BUILD_TYPE=RELEASE \-D WITH_GTK_2_X=ON \-D OPENCV_ENABLE_NONFREE=ON \-D OPENCV_GENERATE_PKGCONFIG=YES \-D OPENCV_EXTRA_MODULES_PATH=/home/m0rtzz/Program_Files/opencv-3.4.16/opencv_contrib-3.4.16/modules \-D WITH_CUDA=ON \-D WITH_CUDNN=ON \-D WITH_FFMPEG=ON \-D WITH_OPENGL=ON \-D WITH_NVCUVID=ON \-D ENABLE_PRECOMPILED_HEADERS=OFF \-D CMAKE_EXE_LINKER_FLAGS=-lcblas \-D WITH_LAPACK=OFF \-j$(nproc) ..

过程中会出现IPPICV: Download: ippicv_2020_lnx_intel64_20191018_general.tgz

解决方法:

cd ../ && mkdir downloads
cd downloads && pwd

34afaa6be110406889d65e506c8e2a2b

复制绝对路径后:

打开这个ippicv.cmake

6e9cc239b5a048ef932999f88634f470

把绝对路径复制进去:

e3d64802ff8748d7b5921fdbed6093a3

然后把下面网址下载的文件cp进去就行了(或者开头百度云分享链接中自取~)

https://gitcode.com/mirrors/opencv/opencv_3rdparty

然后重新打开终端,输入:cmake(别忘了改路径):

cmake -D CMAKE_BUILD_TYPE=RELEASE \-D WITH_GTK_2_X=ON \-D OPENCV_ENABLE_NONFREE=ON \-D OPENCV_GENERATE_PKGCONFIG=YES \-D OPENCV_EXTRA_MODULES_PATH=/home/m0rtzz/Program_Files/opencv-3.4.16/opencv_contrib-3.4.16/modules \-D WITH_CUDA=ON \-D WITH_CUDNN=ON \-D WITH_FFMPEG=ON \-D WITH_OPENGL=ON \-D WITH_NVCUVID=ON \-D ENABLE_PRECOMPILED_HEADERS=OFF \-D CMAKE_EXE_LINKER_FLAGS=-lcblas \-D WITH_LAPACK=OFF \-j$(nproc) ..

875eccbb886649e9af1df6fa04c0a168

这些.i文件需要在国外下载,网上说下载好文件直接把他们放进相对应的目录下就行,实测不行(建议科学的上网,想试试网上说法的:

https://blog.csdn.net/curious_undergather/article/details/111639199

文件的话,开头百度云分享链接里都有)

cmake -D CMAKE_BUILD_TYPE=RELEASE \-D WITH_GTK_2_X=ON \-D OPENCV_ENABLE_NONFREE=ON \-D OPENCV_GENERATE_PKGCONFIG=YES \-D OPENCV_EXTRA_MODULES_PATH=/home/m0rtzz/Program_Files/opencv-3.4.16/opencv_contrib-3.4.16/modules \-D WITH_CUDA=ON \-D WITH_CUDNN=ON \-D WITH_FFMPEG=ON \-D WITH_OPENGL=ON \-D WITH_NVCUVID=ON \-D ENABLE_PRECOMPILED_HEADERS=OFF \-D CMAKE_EXE_LINKER_FLAGS=-lcblas \-D WITH_LAPACK=OFF \-j$(nproc) ..

52f9d072a94643efb55ffa119bf1db67

sudo make -j$(nproc)

image-20240206162428124

打开那个头文件,把报错所在行改为:

#include "lapacke.h"
sudo make -j$(nproc)

e8807dc847184bdd9935739a3a623c75

sudo make install

325ba9f219904c1abf99cc8924c2374e

sudo gedit /etc/ld.so.conf.d/opencv.conf

加入

/usr/local/lib

保存后关闭,打开终端,输入:

sudo ldconfig
sudo gedit /etc/bash.bashrc

加入

export PKG_CONFIG_PATH=${PKG_CONFIG_PATH}:/usr/local/lib/pkgconfig

保存后关闭,打开终端,输入:

source /etc/bash.bashrc

测试

cd ../samples/cpp/example_cmakecmake -j$(nproc) .sudo make -j$(nproc)./opencv_example

1cb714361c874eacb01f3bce3f37e1fb.png

安装成功!

设置cv_bridge的版本(ROS-melodic,经实践发现毫无效果):

sudo gedit /opt/ros/melodic/share/cv_bridge/cmake/cv_bridgeConfig.cmake
# generated from catkin/cmake/template/pkgConfig.cmake.in # append elements to a list and remove existing duplicates from the list# copied from catkin/cmake/list_append_deduplicate.cmake to keep pkgConfig# self containedmacro(_list_append_deduplicate listname)  if(NOT "${ARGN}" STREQUAL "")    if(${listname})      list(REMOVE_ITEM ${listname} ${ARGN})    endif()     list(APPEND ${listname} ${ARGN})  endif()endmacro() # append elements to a list if they are not already in the list# copied from catkin/cmake/list_append_unique.cmake to keep pkgConfig# self containedmacro(_list_append_unique listname)  foreach(_item ${ARGN})    list(FIND ${listname} ${_item} _index)     if(_index EQUAL -1)      list(APPEND ${listname} ${_item})    endif()  endforeach()endmacro() # pack a list of libraries with optional build configuration keywords# copied from catkin/cmake/catkin_libraries.cmake to keep pkgConfig# self containedmacro(_pack_libraries_with_build_configuration VAR)  set(${VAR} "")  set(_argn ${ARGN})  list(LENGTH _argn _count)  set(_index 0)   while(${_index} LESS ${_count})    list(GET _argn ${_index} lib)     if("${lib}" MATCHES "^(debug|optimized|general)$")      math(EXPR _index "${_index} + 1")       if(${_index} EQUAL ${_count})        message(FATAL_ERROR "_pack_libraries_with_build_configuration() the list of libraries '${ARGN}' ends with '${lib}' which is a build configuration keyword and must be followed by a library")      endif()       list(GET _argn ${_index} library)      list(APPEND ${VAR} "${lib}${CATKIN_BUILD_CONFIGURATION_KEYWORD_SEPARATOR}${library}")    else()      list(APPEND ${VAR} "${lib}")    endif()     math(EXPR _index "${_index} + 1")  endwhile()endmacro() # unpack a list of libraries with optional build configuration keyword prefixes# copied from catkin/cmake/catkin_libraries.cmake to keep pkgConfig# self containedmacro(_unpack_libraries_with_build_configuration VAR)  set(${VAR} "")   foreach(lib ${ARGN})    string(REGEX REPLACE "^(debug|optimized|general)${CATKIN_BUILD_CONFIGURATION_KEYWORD_SEPARATOR}(.+)$" "\\1;\\2" lib "${lib}")    list(APPEND ${VAR} "${lib}")  endforeach()endmacro() if(cv_bridge_CONFIG_INCLUDED)  return()endif() set(cv_bridge_CONFIG_INCLUDED TRUE) # set variables for source/devel/install prefixesif("FALSE" STREQUAL "TRUE")  set(cv_bridge_SOURCE_PREFIX /tmp/binarydeb/ros-melodic-cv-bridge-1.13.1)  set(cv_bridge_DEVEL_PREFIX /tmp/binarydeb/ros-melodic-cv-bridge-1.13.1/.obj-x86_64-linux-gnu/devel)  set(cv_bridge_INSTALL_PREFIX "")  set(cv_bridge_PREFIX ${cv_bridge_DEVEL_PREFIX})else()  set(cv_bridge_SOURCE_PREFIX "")  set(cv_bridge_DEVEL_PREFIX "")  set(cv_bridge_INSTALL_PREFIX /opt/ros/melodic)  set(cv_bridge_PREFIX ${cv_bridge_INSTALL_PREFIX})endif() # warn when using a deprecated packageif(NOT "" STREQUAL "")  set(_msg "WARNING: package 'cv_bridge' is deprecated")   # append custom deprecation text if available  if(NOT "" STREQUAL "TRUE")    set(_msg "${_msg} ()")  endif()   message("${_msg}")endif() # flag project as catkin-based to distinguish if a find_package()-ed project is a catkin projectset(cv_bridge_FOUND_CATKIN_PROJECT TRUE) # if(NOT "include;/usr/include;/usr/include/opencv " STREQUAL " ")# set(cv_bridge_INCLUDE_DIRS "")# set(_include_dirs "include;/usr/include;/usr/include/opencv")if(NOT "include;/usr/local/include/opencv;/usr/local/include/opencv2 " STREQUAL " ")  set(cv_bridge_INCLUDE_DIRS "")  set(_include_dirs "include;/usr/local/include/opencv;/usr/local/include/opencv;/usr/local/include/;/usr/include")   if(NOT "https://github.com/ros-perception/vision_opencv/issues " STREQUAL " ")    set(_report "Check the issue tracker 'https://github.com/ros-perception/vision_opencv/issues' and consider creating a ticket if the problem has not been reported yet.")  elseif(NOT "http://www.ros.org/wiki/cv_bridge " STREQUAL " ")    set(_report "Check the website 'http://www.ros.org/wiki/cv_bridge' for information and consider reporting the problem.")  else()    set(_report "Report the problem to the maintainer 'Vincent Rabaud <[email protected]>' and request to fix the problem.")  endif()   foreach(idir ${_include_dirs})    if(IS_ABSOLUTE ${idir} AND IS_DIRECTORY ${idir})      set(include ${idir})    elseif("${idir} " STREQUAL "include ")      get_filename_component(include "${cv_bridge_DIR}/../../../include" ABSOLUTE)       if(NOT IS_DIRECTORY ${include})        message(FATAL_ERROR "Project 'cv_bridge' specifies '${idir}' as an include dir, which is not found.  It does not exist in '${include}'.  ${_report}")      endif()    else()      message(FATAL_ERROR "Project 'cv_bridge' specifies '${idir}' as an include dir, which is not found.  It does neither exist as an absolute directory nor in '\${prefix}/${idir}'.  ${_report}")    endif()     _list_append_unique(cv_bridge_INCLUDE_DIRS ${include})  endforeach()endif() # set(libraries "cv_bridge;/usr/lib/x86_64-linux-gnu/libopencv_core.so.3.2.0;/usr/lib/x86_64-linux-gnu/libopencv_imgproc.so.3.2.0;/usr/lib/x86_64-linux-gnu/libopencv_imgcodecs.so.3.2.0")set(libraries "cv_bridge;/usr/local/lib/libopencv_core.so.3.4.16;/usr/local/lib/libopencv_imgproc.so.3.4.16;/usr/local/lib/libopencv_imgcodecs.so.3.4.16") foreach(library ${libraries})  # keep build configuration keywords, target names and absolute libraries as-is  if("${library}" MATCHES "^(debug|optimized|general)$")    list(APPEND cv_bridge_LIBRARIES ${library})  elseif(${library} MATCHES "^-l")    list(APPEND cv_bridge_LIBRARIES ${library})  elseif(${library} MATCHES "^-")    # This is a linker flag/option (like -pthread)    # There's no standard variable for these, so create an interface library to hold it    if(NOT cv_bridge_NUM_DUMMY_TARGETS)      set(cv_bridge_NUM_DUMMY_TARGETS 0)    endif()     # Make sure the target name is unique    set(interface_target_name "catkin::cv_bridge::wrapped-linker-option${cv_bridge_NUM_DUMMY_TARGETS}")     while(TARGET "${interface_target_name}")      math(EXPR cv_bridge_NUM_DUMMY_TARGETS "${cv_bridge_NUM_DUMMY_TARGETS}+1")      set(interface_target_name "catkin::cv_bridge::wrapped-linker-option${cv_bridge_NUM_DUMMY_TARGETS}")    endwhile()     add_library("${interface_target_name}" INTERFACE IMPORTED)     if("${CMAKE_VERSION}" VERSION_LESS "3.13.0")      set_property(        TARGET        "${interface_target_name}"        APPEND PROPERTY        INTERFACE_LINK_LIBRARIES "${library}")    else()      target_link_options("${interface_target_name}" INTERFACE "${library}")    endif()     list(APPEND cv_bridge_LIBRARIES "${interface_target_name}")  elseif(TARGET ${library})    list(APPEND cv_bridge_LIBRARIES ${library})  elseif(IS_ABSOLUTE ${library})    list(APPEND cv_bridge_LIBRARIES ${library})  else()    set(lib_path "")    set(lib "${library}-NOTFOUND")     # since the path where the library is found is returned we have to iterate over the paths manually    foreach(path /opt/ros/melodic/lib;/opt/ros/melodic/lib)      find_library(lib ${library}        PATHS ${path}        NO_DEFAULT_PATH NO_CMAKE_FIND_ROOT_PATH)       if(lib)        set(lib_path ${path})        break()      endif()    endforeach()     if(lib)      _list_append_unique(cv_bridge_LIBRARY_DIRS ${lib_path})      list(APPEND cv_bridge_LIBRARIES ${lib})    else()      # as a fall back for non-catkin libraries try to search globally      find_library(lib ${library})       if(NOT lib)        message(FATAL_ERROR "Project '${PROJECT_NAME}' tried to find library '${library}'.  The library is neither a target nor built/installed properly.  Did you compile project 'cv_bridge'?  Did you find_package() it before the subdirectory containing its code is included?")      endif()       list(APPEND cv_bridge_LIBRARIES ${lib})    endif()  endif()endforeach() set(cv_bridge_EXPORTED_TARGETS "") # create dummy targets for exported code generation targets to make life of users easierforeach(t ${cv_bridge_EXPORTED_TARGETS})  if(NOT TARGET ${t})    add_custom_target(${t})  endif()endforeach() set(depends "rosconsole;sensor_msgs") foreach(depend ${depends})  string(REPLACE " " ";" depend_list ${depend})   # the package name of the dependency must be kept in a unique variable so that it is not overwritten in recursive calls  list(GET depend_list 0 cv_bridge_dep)  list(LENGTH depend_list count)   if(${count} EQUAL 1)    # simple dependencies must only be find_package()-ed once    if(NOT ${cv_bridge_dep}_FOUND)      find_package(${cv_bridge_dep} REQUIRED NO_MODULE)    endif()  else()    # dependencies with components must be find_package()-ed again    list(REMOVE_AT depend_list 0)    find_package(${cv_bridge_dep} REQUIRED NO_MODULE ${depend_list})  endif()   _list_append_unique(cv_bridge_INCLUDE_DIRS ${${cv_bridge_dep}_INCLUDE_DIRS})   # merge build configuration keywords with library names to correctly deduplicate  _pack_libraries_with_build_configuration(cv_bridge_LIBRARIES ${cv_bridge_LIBRARIES})  _pack_libraries_with_build_configuration(_libraries ${${cv_bridge_dep}_LIBRARIES})  _list_append_deduplicate(cv_bridge_LIBRARIES ${_libraries})   # undo build configuration keyword merging after deduplication  _unpack_libraries_with_build_configuration(cv_bridge_LIBRARIES ${cv_bridge_LIBRARIES})   _list_append_unique(cv_bridge_LIBRARY_DIRS ${${cv_bridge_dep}_LIBRARY_DIRS})  list(APPEND cv_bridge_EXPORTED_TARGETS ${${cv_bridge_dep}_EXPORTED_TARGETS})endforeach() set(pkg_cfg_extras "cv_bridge-extras.cmake") foreach(extra ${pkg_cfg_extras})  if(NOT IS_ABSOLUTE ${extra})    set(extra ${cv_bridge_DIR}/${extra})  endif()   include(${extra})endforeach()

opencv-3.4.4cmake命令:

cmake -D CMAKE_BUILD_TYPE=BUILD \-D CMAKE_INSTALL_PREFIX=/usr/local \-D WITH_GTK_2_X=ON \-D OPENCV_ENABLE_NONFREE=ON \-D OPENCV_GENERATE_PKGCONFIG=YES \-D OPENCV_EXTRA_MODULES_PATH=/home/m0rtzz/Program_Files/opencv-3.4.4/opencv_contrib-3.4.4/modules \-D WITH_CUDA=ON \-D WITH_CUDNN=ON \-D OPENCV_DNN_CUDA=ON \-D WITH_FFMPEG=ON \-D WITH_OPENGL=ON \-D WITH_NVCUVID=ON \-D ENABLE_PRECOMPILED_HEADERS=OFF \-D CMAKE_EXE_LINKER_FLAGS=-lcblas \-D WITH_LAPACK=OFF \-D WITH_OPENMP=ON \-D BUILD_TESTS=OFF \-D BUILD_opencv_xfeatures2d=ON \-D CUDA_ARCH_BIN=8.6 \-D CUDA_GENERATION=Auto \-D CUDA_HOST_COMPILER:FILEPATH=/usr/bin/gcc-7 \-j$(nproc) ..

②OpenCV4.2.0的cmake命令及注意事项(Ubuntu20.04装这个):

cmake -D CMAKE_BUILD_TYPE=RELEASE \-D OPENCV_GENERATE_PKGCONFIG=ON \-D INSTALL_PYTHON_EXAMPLES=ON \-D INSTALL_C_EXAMPLES=ON \-D OPENCV_EXTRA_MODULES_PATH=/home/m0rtzz/Program_Files/opencv-4.2.0/opencv_contrib-4.2.0/modules \-D WITH_V4L=ON \-D WITH_QT=ON \-D WITH_GTK=ON \-D WITH_VTK=ON \-D WITH_OPENGL=ON \-D WITH_OPENMP=ON \-D BUILD_EXAMPLES=ON \-D WITH_CUDA=ON \-D WITH_CUDNN=ON \-D OPENCV_DNN_CUDA=ON \-D BUILD_TIFF=ON \-D ENABLE_PRECOMPILED_HEADERS=OFF \-D OPENCV_ENABLE_NONFREE=ON \-D CUDA_GENERATION=Auto \-D CUDA_CUDA_LIBRARY=/usr/local/cuda/lib64/stubs/libcuda.so \-D CUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda \-D CUDNN_LIBRARY=/usr/local/cuda/lib64/libcudnn.so \-D WITH_ADE=OFF ..

或:

cmake -D CMAKE_BUILD_TYPE=RELEASE \-D OPENCV_GENERATE_PKGCONFIG=ON \-D INSTALL_PYTHON_EXAMPLES=ON \-D INSTALL_C_EXAMPLES=ON \-D OPENCV_EXTRA_MODULES_PATH=/home/m0rtzz/Program_Files/opencv-4.2.0/opencv_contrib-4.2.0/modules \-D WITH_V4L=ON \-D WITH_QT=ON \-D WITH_GTK=ON \-D WITH_VTK=ON \-D WITH_OPENGL=ON \-D WITH_OPENMP=ON \-D BUILD_EXAMPLES=ON \-D WITH_CUDA=ON \-D WITH_CUDNN=ON \-D OPENCV_DNN_CUDA=ON \-D BUILD_TIFF=ON \-D ENABLE_PRECOMPILED_HEADERS=OFF \-D OPENCV_ENABLE_NONFREE=ON \-D CUDA_GENERATION=Auto \-D WITH_ADE=OFF \-D CUDA_CUDA_LIBRARY=true \-D CUDA_nppicom_LIBRARY=true \-j$(nproc) ..

或:

cmake -D CMAKE_BUILD_TYPE=RELEASE \-D OPENCV_GENERATE_PKGCONFIG=ON \-D INSTALL_PYTHON_EXAMPLES=ON \-D INSTALL_C_EXAMPLES=ON \-D OPENCV_EXTRA_MODULES_PATH=/home/m0rtzz/Program_Files/opencv-4.2.0/opencv_contrib-4.2.0/modules \-D WITH_V4L=ON \-D WITH_QT=ON \-D WITH_GTK=ON \-D WITH_VTK=OFF \-D WITH_OPENGL=ON \-D WITH_OPENMP=ON \-D BUILD_EXAMPLES=ON \-D WITH_CUDA=ON \-D WITH_CUDNN=ON \-D OPENCV_DNN_CUDA=ON \-D BUILD_TIFF=ON \-D ENABLE_PRECOMPILED_HEADERS=OFF \-D OPENCV_ENABLE_NONFREE=ON \-D CUDA_GENERATION=Auto \-D WITH_ADE=OFF \-D CUDA_CUDA_LIBRARY=true \-D CUDNN_LIBRARY=/usr/local/cuda/lib64/libcudnn.so \-D CUDA_ARCH_BIN= 8.6\-D CUDA_nppicom_LIBRARY=stdc++ \-D CUDA_HOST_COMPILER:FILEPATH=/usr/bin/gcc \-j$(nproc) ..

CUDA_ARCH_BIN查看命令:

 sudo apt install mlocate sudo updatedb.mlocate $(mlocate deviceQuery | grep cuda | head -n 1)

image-20240206162114753

==+(解决CUDNN8编译报错,需手动加入PR代码)==

https://github.com/opencv/opencv/pull/17685/files

.patch文件可用以下命令下载:

wget https://raw.gitcode.com/M0rtzz/opencv4-cudnn8-support-patch/assets/149 -O opencv_PR_17685.patch

==+(如果不执行以下几步,编译darknet_ros会报错:error:‘IplImage’之类的)==

sudo cp /usr/local/lib/pkgconfig/opencv4.pc /usr/lib/pkgconfig
cd /usr/lib/pkgconfigsudo cp opencv4.pc opencv.pc

10-安装protobuf2.6.1

sudo apt install libtool

https://github.com/google/protobuf/releases/download/v2.6.1/protobuf-2.6.1.tar.gz

或镜像:

wget https://raw.gitcode.com/M0rtzz/protobuf-2.6.1/assets/199 -O protobuf-2.6.1.tar.gz

解压压缩包后进入文件夹,打开终端,输入:

./autogen.sh

da01acbb001f42cea9ca08ddad814655.png

./configure --prefix=/usr/local/protobuf

1c6a5408dece4f7aa5fb4e78680eb913.png

sudo make -j$(nproc)

140562b609004503a731358eea387731.png

养成make check的好习惯

sudo make check -j$(nproc)

f9827d81f7f946d8ba91d26494c7251d.png

sudo make install

bf530b0ab13e4939bd810d4731e2764d.png

sudo gedit /etc/profile

在最后加入:

#protobufexport PATH=${PATH}:/usr/local/protobuf/bin/export PKG_CONFIG_PATH=${PKG_CONFIG_PATH}:/usr/local/protobuf/lib/pkgconfig/

保存后关闭,打开终端,输入:

source /etc/profile
sudo gedit /etc/ld.so.conf

在最后一行输入:

/usr/local/protobuf/lib

保存后关闭,打开终端,输入:

sudo ldconfig

d80cbadb617b4986a99827d13170e9eb.png

最后验证版本:

protoc --version

11-配置OpenBLAS

sudo apt install gcc-arm-linux-gnueabihf libnewlib-arm-none-eabi libc6-dev-i386

OpenBLAS源码(非最新)最上方百度网盘里有,或者使用公益加速源:

git clone https://gitclone.com/github.com/OpenMathLib/OpenBLAS.git OpenBLAS
cd OpenBLAS
sudo apt install gfortran
sudo make FC=gfortran TARGET=ARMV8 -j$(nproc)
sudo make PREFIX=/usr/local install

af045e49e18643d8a1c0c12deb166d44.png

查看版本

grep OPENBLAS_VERSION /usr/local/include/openblas_config.h

e76d37851f2e4d08b08c4ac035423cbc.png

12-配置seetaface2工作空间

gedit ~/.bashrc

在最后加入

source /home/m0rtzz/Workspaces/catkin_ws/devel/setup.bash

保存后关闭,打开终端,输入:

source ~/.bashrc

597806c7f0834400b846b99cae4c9d63.png

0bccdd5c978048189fcd47437ad89dfc.png

解决办法:

终端输入:

gedit ~/.bashrc

加入工作空间下lib文件夹的路径

export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/home/m0rtzz/Workspaces/catkin_ws/lib

保存后关闭,打开终端,输入:

source ~/.bashrc

4000fa5374ee48dfbc2fdee5c5ddf2d0.png

解决!

报错:

Gtk-Message: 15:22:30.610: Failed to load module "canberra-gtk-module"

解决方法:

sudo apt install libcanberra-gtk*

13-百度智能云

sudo apt install curl

include jsoncpp库的头文件改为

#include "jsoncpp/json/json.h"

g++编译

g++ *.cpp -o * -lcurl -ljsoncpp

运行

./*

14-使在桌面上右键打开终端时进入Desktop目录(Ubuntu18.04)

https://packages.ubuntu.com/source/bionic/gnome-terminal

下载下图表格中的下边两个文件

ae94b3493cf44d08a7a962e070256653.png

下载好gnome-terminal_3.28.1.orig.tar.xz文件之后解压出一个文件夹gnome-terminal-3.28.1,将gnome-terminal_3.28.1-1ubuntu1.debian.tar.xz 里面debian目录下的文件解压到之前解压出的gnome-terminal-3.28.1目录下

5097eb7f2b8b474a8411cf11a3694b55.png

在此目录下打开终端

git apply patches/*.patch

安装依赖

sudo apt install  intltool  libvte-2.91-dev gsettings-desktop-schemas-dev uuid-dev libdconf-dev libpcre2-dev libgconf2-dev libxml2-utils  gnome-shell libnautilus-extension-dev itstool  yelp-tools pcre2-utils

打开src/下的terminal-nautilus.c

找到

static inline gbooleandesktop_opens_home_dir (TerminalNautilus *nautilus){#if 0  return  _client_get_bool (gconf_client,                                "/apps/nautilus-open-terminal/desktop_opens_home_dir",                                NULL);#endif  return TRUE;}

改为

static inline gbooleandesktop_opens_home_dir (TerminalNautilus *nautilus){#if 0  return  _client_get_bool (gconf_client,                                "/apps/nautilus-open-terminal/desktop_opens_home_dir",                                NULL);#endif  return FALSE;}

src下打开终端

cd ..
autoreconf --install
autoconf
./configure --prefix='/usr'
sudo make -j$(nproc)
sudo make check -j$(nproc)
sudo make install

83ef9eec20fe4b5991ce5e0d3107d68d.png

sudo cp /usr/lib/nautilus/extensions-3.0/libterminal-nautilus.so /usr/lib/x86_64-linux-gnu/nautilus/extensions-3.0/
reboot

问题解决!

15-同步双系统时间

sudo apt install ntpdate
sudo ntpdate time.windows.com
timedatectl set-local-rtc 1 --adjust-system-clock

c17b8bd812df4e5f86bfba16f5948a9d.png

16-启动菜单的默认项

sudo gedit /etc/default/grub

改一下GRUB_DEFAULT=后边的数字,默认是0,windows是第n个就设置为 n-1

2a4260711db540b6af9fd30682dc9257.png

保存后关闭,打开终端,输入:

sudo update-grub

cb668a5bf2a84177956f1c6417f5310a.png

reboot

重启后问题解决~

17-安装darknet版yolov3及darknet-ros工作空间

git clone https://gitcode.com/mirrors/AlexeyAB/darknet.git darknet
cd darknet
sudo gedit Makefile

修改以下前几行为:

GPU=1CUDNN=1CUDNN_HALF=1OPENCV=1AVX=0OPENMP=1LIBSO=1ZED_CAMERA=0ZED_CAMERA_v2_8=0

然后修改NVCC=后边为nvcc路径:

NVCC=/usr/local/cuda/bin/nvcc

image-20240206170152890

之后保存退出后,打开终端,输入:

sudo gedit /etc/ld.so.conf.d/cuda.conf

加入以下内容后保存退出:

/usr/local/cuda/lib64

打开终端输入:

sudo ldconfig
sudo make -j$(nproc)
./darknet

输出为:

usage: ./darknet <function>

9e10fa48060244c9972d9db1be8178cb.png

之后我们下载yolov3权重文件:

mkdir weights && cd ./weights && wget https://pjreddie.com/media/files/yolov3.weights

正常wget太慢,我们使用mwget进行安装:

找一个你想安装mwget的地方打开终端,输入:

sudo apt install build-essential intltool
sudo apt upgrade intltool
sudo apt install libssl-dev

之后:

git clone https://github.com/rayylee/mwget.git mwget

或公益加速源:

git clone https://mirror.ghproxy.com/https://github.com/rayylee/mwget.git mwget
cd mwget
./configure
sudo make -j$(nproc)
sudo make install

之后mwget就安装成功了

我们用mwget多线程获取权重文件:

cd darknet/ && mkdir weights && cd weights/
mwget https://pjreddie.com/media/files/yolov3.weights -n16

上方命令是16线程获取 ,速度会快很多

05ea3530787d45c1b9672559eb8df952.png

到此为止darknet版yolov3就配置好了

下面我们测试一下:

./darknet detect cfg/yolov3.cfg weights/yolov3.weights data/dog.jpg

输出以下就证明配置没有问题:

9967309fc02949e98046bf0b4566371b.png

输出的最后一行报错:

Gtk-Message: 15:22:30.610: Failed to load module "canberra-gtk-module"

解决方法:

sudo apt install libcanberra-gtk*

安装之后重新运行就不会报错了。

配置 darknet-ros工作空间:

mkdir darknet-ros_test_ws && cd darknet-ros_test_ws/ && mkdir src
cd src/ && catkin_init_workspace
cd .. && catkin_make -j$(nproc)
cd src/

17.1. ①如果是OpenCV3:

git clone --recursive https://gitcode.com/mirrors/leggedrobotics/darknet_ros.git darknet_ros

17.2. ①如果是OpenCV4:

git clone -b opencv4 --recursive https://github.com/kunaltyagi/darknet_ros.git darknet_roscd darknet_rosgit branch -agit checkout remotes/origin/opencv4git submodule update --recursive

如果是OpenCV4,视频流只有第一帧是RGB8编码格式,阅读源码后发现在show_image之前调用image.cpp中的rgbgr_image函数循环转换图像编码格式即可解决此问题:

// @file : image.cppvoid rgbgr_image(image im){    int i;    for(i = 0; i < im.w*im.h; ++i){        float swap = im.data[i];        im.data[i] = im.data[i+im.w*im.h*2];        im.data[i+im.w*im.h*2] = swap;    }}
// @file : YoloObjectDetector.cpp  void *YoloObjectDetector::displayInThread(void *ptr)  {    // NOTE: Modified by M0rtzz,Solved the problem of displaying video streams as bgr8    rgbgr_image(buff_[(buffIndex_ + 1) % 3]);    int c = show_image(buff_[(buffIndex_ + 1) % 3], "YOLO V3", waitKeyDelay_);    if (c != -1)      c = c % 256;    if (c == 27)    {      demoDone_ = 1;      return 0;    }    else if (c == 82)    {      demoThresh_ += .02;    }    else if (c == 84)    {      demoThresh_ -= .02;      if (demoThresh_ <= .02)        demoThresh_ = .02;    }    else if (c == 83)    {      demoHier_ += .02;    }    else if (c == 81)    {      demoHier_ -= .02;      if (demoHier_ <= .0)        demoHier_ = .0;    }    return 0;  }

之后:

cd darknet_ros && sudo rm -rf darknet
git clone https://gitcode.com/mirrors/AlexeyAB/darknet.git darknet

catkin_make如果编译不过的话(error: ‘IplImage’之类的,之前装OpenCV提到过避免报错的方法),注意以下命令是只编译darknet-ros一个包,若工作空间下有多个包需要一起编译那么把命令中的darknet-ros删除重新执行即可:

catkin_make -j$(nproc) darknet_ros --cmake-args -DCMAKE_CXX_FLAGS=-DCV__ENABLE_C_API_CTORS

如果报错nvcc fatal : Unsupported gpu architecture 'compute_30'之类的,是因为CUDA11已经不支持compute_30了,我们将darknet_ros/darknet/Makefile和darknet_ros/darknet_ros/CMakeLists.txt中含有 'compute_30'的行进行注释后重新catkin_make:

b2175aecc6ec4d489d3b0703e4f9d00d

da1d083fd06f4aed9dd17b0e1446223f

18-Azure Kinect SDK-v1.4.0的安装(Ubuntu18.04源码编译安装,也可像本小节末尾Ubuntu20.04一样直接使用.deb包安装)

①Ubuntu18.04源码编译安装:

Reference:

https://blog.csdn.net/BlacKingZ/article/details/119115883

git clone -b v1.4.0 https://gitcode.com/microsoft/Azure-Kinect-Sensor-SDK.git Azure-Kinect-Sensor-SDK-v1.4.0
sudo dpkg --add-architecture amd64
sudo apt update
sudo apt install -y  pkg-config  ninja-build doxygen clang  gcc-multilib  g++-multilib python3 nasm cmake libgl1-mesa-dev libsoundio-dev libvulkan-dev libx11-dev libxcursor-dev libxinerama-dev libxrandr-dev libusb-1.0-0-dev libssl-dev libudev-dev mesa-common-dev uuid-dev

https://packages.microsoft.com/ubuntu/18.04/prod/pool/main/libk/

从上面的网站下载 libk4a1.2libk4a1.2_1.2.0_amd64.deb文件

f806a0d411ac415497e78b45bf3c20ac.png

解压 .deb 文件,再解压内部的 data.tar.gzcontrol.tar.gz文件,并进入data文件夹,打开终端输入:

cd usr/lib/x86_64-linux-gnusudo cp libdepthengine.so.2.0 /usr/lib/x86_64-linux-gnu

随后进入下载好的 Azure-Kinect-Sensor-SDK-v1.4.0文件夹下打开终端输入

mkdir build && cd buildcmake -j$(nproc) .. -GNinja

注意此步过程中extern/libyuv/src克隆较慢原因是使用了google的网站,我们把对应文件的克隆url改为github的就能正常克隆了,在Azure-Kinect-Sensor-SDK-v1.4.0文件夹下键盘Ctrl+H显示隐藏文件,打开.gitmodules文件,修改libyuv的部分为:

[submodule "extern/libyuv/src"]	path = extern/libyuv/src	url = https://github.com/lemenkov/libyuv.git

保存后关闭

之后打开.git文件夹下的config文件,修改libyuv的部分为:

[submodule "extern/libyuv/src"]	active = true	url = https://github.com/lemenkov/libyuv.git

接下来就能正常克隆了,但是速度还是很慢,请耐心等待~

保存后关闭,打开终端,输入:

cmake -j$(nproc) .. -GNinja

克隆完成后为如图所示:

b07fac22ae4b45ebb3e5a061739a4d87.png

之后输入:

sudo ninja -j$(nproc)

完成后如下:

c625650ae9744c02aea905984da47566.png

最后输入:

sudo ninja install

完成后如下:

b71183010a584c469b0a6cbfc72b3e39.png

之后安装依赖:

sudo add-apt-repository ppa:ubuntu-toolchain-r/test
sudo apt update
sudo gedit /etc/apt/sources.list

在最后一行加入:

## gcc-4.9deb http://dk.archive.ubuntu.com/ubuntu/ xenial maindeb http://dk.archive.ubuntu.com/ubuntu/ xenial universe##

保存后关闭,打开终端,输入:

sudo apt update
sudo apt install gcc-4.9
sudo apt upgrade libstdc++6
sudo cp /usr/lib/x86_64-linux-gnu/libk4a1.4/libdepthengine.so.2.0 /usr/lib

之后测试一下:

sudo ./bin/k4aviewer

cd9e9d8ea9884b6eb7c73e864efb7912

授予权限:

cd .. && sudo cp scripts/99-k4a.rules /etc/udev/rules.d

如果是.deb包安装,该udev规则文件(99-k4a.rules,将其保存在/etc/udev/rules.d下)内容如下:

# Bus 002 Device 116: ID 045e:097a Microsoft Corp.  - Generic Superspeed USB Hub# Bus 001 Device 015: ID 045e:097b Microsoft Corp.  - Generic USB Hub# Bus 002 Device 118: ID 045e:097c Microsoft Corp.  - Azure Kinect Depth Camera# Bus 002 Device 117: ID 045e:097d Microsoft Corp.  - Azure Kinect 4K Camera# Bus 001 Device 016: ID 045e:097e Microsoft Corp.  - Azure Kinect Microphone ArrayBUS!="usb", ACTION!="add", SUBSYSTEM!=="usb_device", GOTO="k4a_logic_rules_end"ATTRS{idVendor}=="045e", ATTRS{idProduct}=="097a", MODE="0666", GROUP="plugdev"ATTRS{idVendor}=="045e", ATTRS{idProduct}=="097b", MODE="0666", GROUP="plugdev"ATTRS{idVendor}=="045e", ATTRS{idProduct}=="097c", MODE="0666", GROUP="plugdev"ATTRS{idVendor}=="045e", ATTRS{idProduct}=="097d", MODE="0666", GROUP="plugdev"ATTRS{idVendor}=="045e", ATTRS{idProduct}=="097e", MODE="0666", GROUP="plugdev"LABEL="k4a_logic_rules_end"

②Ubuntu20.04,Reference:

https://blog.csdn.net/qq_42108414/article/details/129015474

19-配置科大讯飞

https://www.xfyun.cn/sdk/dispatcher

sudo apt install sox libsox-fmt-all pavucontrol
sudo gedit /usr/include/pcl-1.8/pcl/visualization/cloud_viewer.h

修改一下:

//line 199左右private:        /** \brief Private implementation. */        struct CloudViewer_impl;        //std::auto_ptr<CloudViewer_impl> impl_;        std::shared_ptr<CloudViewer_impl> impl_;                boost::signals2::connection         registerMouseCallback (boost::function<void (const pcl::visualization::MouseEvent&)>);

下载所需SDK,将libs/x64/libmsc.so文件拷贝至工作空间的某个位置。

cmake_minimum_required(VERSION 3.0.2)project(tts_voice_test)SET(CMAKE_CXX_FLAGS "-std=c++0x")find_package(k4a REQUIRED)find_package(OpenCV REQUIRED)find_package(catkin REQUIRED COMPONENTSroscpprospystd_msgscv_bridgemessage_generation) generate_messages(  DEPENDENCIES  std_msgs) include_directories(  ~/Workspaces/tts_test_ws/include  ${catkin_INCLUDE_DIRS}) add_executable(tts_voice_test src/tts_voice_test.cpp) target_link_libraries(tts_voice_test  PRIVATE k4a::k4a  ${catkin_LIBRARIES}  ${OpenCV_LIBRARIES}  ${PCL_LIBRARIES}  -lcurl -ljsoncpp -lmsc -lrt -ldl -pthread  -lasound  /home/m0rtzz/Workspaces/tts_voice_test_ws/libs/x64/libmsc.so

打开终端:

catkin_make

若找不到asoundlib.h文件打开终端输入:

sudo apt install libasound2-dev

编译通过~

20-配置realsense及realsense工作空间

sudo apt install ros-${ROS_DISTRO}-realsense2-camera ros-${ROS_DISTRO}-rgbd-launch

808f1ad01090402eafa94dd83545aed3.png

安装realsense sdk:

sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-key F6E65AC044F831AC80A06380C8B3A55A6F3EFCDE || sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-key F6E65AC044F831AC80A06380C8B3A55A6F3EFCDE

8fbc31d16a394fdc91f04302aa04b1d4.png

sudo add-apt-repository "deb https://librealsense.intel.com/Debian/apt-repo $(lsb_release -cs) main" -u

344007bb790841da91383d12d7eaa42b.png

sudo apt update

安装realsense lib

sudo apt install librealsense2-dkms librealsense2-utils

eaed28f89f1d421ca57b099a6266168a.png

测试:

realsense-viewer

66d6e2234539406982aa1aaad9e82698.png

下载lib并指定版本为v2.50.0,否则接下来会与realsense-ros版本冲突导致无法打开摄像头:

git clone -b v2.50.0 https://gitcode.com/mirrors/IntelRealSense/librealsense.git librealsense-2.50.0

image-20240206162428124

安装依赖:

sudo apt install libudev-dev pkg-config libgtk-3-dev libusb-1.0-0-dev pkg-config libglfw3-dev

进入刚才克隆的librealsense文件夹内:

cd librealsense-2.50.0/
./scripts/setup_udev_rules.sh
./scripts/patch-realsense-ubuntu-lts.sh

注意:上面的命令可能执行过慢,请耐心等待,或者科学的上网~

完成结果如下:

389a2809970d49d8a24d299ece865576.png

之后输入:

mkdir build && cd build
# @file : CMakeLists.txt# NOTE: Modified by M0rtzzLINK_LIBRARIES(-lcurl -lcrypto)
cmake -j$(nproc) ../ -DCMAKE_BUILD_TYPE=Release -DBUILD_EXAMPLES=true

以下编译过慢,使用CPU最大线程进行make,速度会快很多:

sudo make -j$(nproc)
sudo make install

测试:

cd examples/capture
./rs-capture

32507b26116048919945b01bb173b72c

接下来我们配置realsense工作空间:

创建一个realsense_test_ws文件夹,进入文件夹下,打开终端:

mkdir src && cd src/

下载功能包:

git clone -b ros1-legacy https://gitcode.com/mirrors/IntelRealSense/realsense-ros.git realsense-ros

2c9b3f3767d845dcb4e2ace8830f6d7b.png

cd ..
catkin_make -j$(nproc) -DCATKIN_ENABLE_TESTING=False -DCMAKE_BUILD_TYPE=Release
catkin_make install

d66e547ed18645e380ba7beb0fd3c999.png

测试:

roslaunch realsense2_camera rs_camera.launch

d6c0eef6da874de9aff7596e3cc16a86.png

还没安摄像头~

21-配置Kinova机械臂工作空间

mkdir -p kinova_test_ws/src
cd kinova_test_ws/src
catkin_init_workspace

645ec87a65914495adcd474cda614d5f.png

cd ..
catkin_make
echo 'source /home/m0rtzz/Workspaces/kinova_test_ws/devel/setup.bash' >> ~/.bashrc
cd src/
git clone https://gitcode.com/mirrors/Kinovarobotics/kinova-ros.git kinova-ros
cd ..

安装缺少的moveit中相应的功能包 :

sudo apt install ros-${ROS_DISTRO}-moveit-visual-tools ros-${ROS_DISTRO}-moveit-ros-planning-interface
catkin_make -j$(nproc)

0808ea44aa244c66b30562c0307c9594.png

sudo cp src/kinova-ros/kinova_driver/udev/10-kinova-arm.rules /etc/udev/rules.d/

安装Moveit和pr2:

sudo apt install $(apt-cache search ros-${ROS_DISTRO}-pr2- | grep -v "ros-${ROS_DISTRO}-pr2-apps" | cut -d' ' -f1)

image-20240206162428124

完成~

22-配置机器人导航(实体)

安装 Arduino IDE:

https://www.arduino.cc/en/software

a5bb61f57e684a538b737a22d537a3c7

下载Linux 64bit安装包

tar -xvf arduino-1.8.19-linux64.tar.xz
sudo mv arduino-1.8.19 /opt
cd /opt/arduino-1.8.19
sudo chmod +x install.sh
sudo ./install.sh
sudo apt install ros-${ROS_DISTRO}-move-base* ros-${ROS_DISTRO}-turtlebot3-* ros-${ROS_DISTRO}-dwa-local-planner
sudo apt install ros-${ROS_DISTRO}-joy ros-${ROS_DISTRO}-teleop-twist-joy ros-${ROS_DISTRO}-teleop-twist-keyboard ros-${ROS_DISTRO}-laser-proc ros-${ROS_DISTRO}-rgbd-launch ros-${ROS_DISTRO}-depthimage-to-laserscan ros-${ROS_DISTRO}-rosserial-arduino ros-${ROS_DISTRO}-rosserial-python ros-${ROS_DISTRO}-rosserial-server ros-${ROS_DISTRO}-rosserial-client ros-${ROS_DISTRO}-rosserial-msgs ros-${ROS_DISTRO}-amcl ros-${ROS_DISTRO}-map-server ros-${ROS_DISTRO}-move-base ros-${ROS_DISTRO}-urdf ros-${ROS_DISTRO}-xacro ros-${ROS_DISTRO}-compressed-image-transport ros-${ROS_DISTRO}-rqt-image-view ros-${ROS_DISTRO}-gmapping ros-${ROS_DISTRO}-navigation ros-${ROS_DISTRO}-interactive-markers

安装 gmapping 包(用于构建地图):

sudo apt install ros-${ROS_DISTRO}-gmapping

安装地图服务包(用于保存与读取地图):

sudo apt install ros-${ROS_DISTRO}-map-server

安装 navigation 包(用于定位以及路径规划):

sudo apt install ros-${ROS_DISTRO}-navigation

因tf和tf2迁移问题,需将工作空间内的所有global_costmap_params.yaml和local_costmap_params.yaml文件里的头几行去掉“/”,返回工作空间根目录下重新编译。

Reference:

http://wiki.ros.org/tf2/Migration

1

2

首先创建实体导航工作空间:

mkdir -p navigation_entity_test_ws/src

e6316e2fe5e941369669b43ab767ea9d.png

cd navigation_entity_test_ws/src
catkin_create_pkg entity_test roscpp rospy std_msgs  gmapping map_server amcl move_base

12f06d657996445fa8d8cac418d21147.png

cd .. && catkin_make

c5a44dee31014fcd9b8f97237e3f58e4.png

查看一下文件目录,tree命令在下边的PS小节有讲怎么安装

tree .

f5242b23d16a43e88ce2626341f3ed33.png

cd src/ && catkin_create_pkg robot_start_test roscpp rospy std_msgs ros_arduino_python usb_cam rplidar_ros
cd robot_start_test/ && mkdir launch && cd launch && touch start_test.launch
<!--@File Name : start_test.launch     @Brief : 机器人启动文件:        1.启动底盘        2.启动激光雷达        3.启动摄像头 --> <launch>        <include file="$(find ros_arduino_python)/launch/arduino.launch" />        <include file="$(find usb_cam)/launch/usb_cam-test.launch" />        <include file="$(find rplidar_ros)/launch/rplidar.launch" /></launch>

FIXME:Updating...

接下来创建机器人模型相关的功能包:

cd src/
catkin_create_pkg robot_description_test urdf xacro

0af4f65dceea471f94be94ef66fadbe2.png

在功能包下新建 urdf 目录,编写具体的 urdf 文件(code命令是VSCode,没安装的小伙伴下边PS小节有下载网址~):

cd robot_description_test/ && mkdir urdf
cd urdf/ && touch {robot.urdf.xacro,robot_base.urdf.xacro,robot_camera.urdf.xacro,robot_laser.urdf.xacro} && code robot.urdf.xacro

将下列代码粘贴进去:

<!-- File Name : robot.urdf.xacro --> <robot name="robot_test" xmlns:xacro="http://wiki.ros.org/xacro">     <xacro:include filename="robot_base.urdf.xacro" />    <xacro:include filename="robot_camera.urdf.xacro" />    <xacro:include filename="robot_laser.urdf.xacro" /> </robot>

保存退出,打开终端输入:

code robot_base.urdf.xacro

将下列代码粘贴进去:

<!-- File Name : robot_base.urdf.xacro --> <robot name="robot_test" xmlns:xacro="http://wiki.ros.org/xacro">     <xacro:property name="footprint_radius" value="0.001" />    <link name="base_footprint">        <visual>            <geometry>                <sphere radius="${footprint_radius}" />            </geometry>        </visual>    </link>     <xacro:property name="base_radius" value="0.1" />    <xacro:property name="base_length" value="0.08" />    <xacro:property name="lidi" value="0.015" />    <xacro:property name="base_joint_z" value="${base_length / 2 + lidi}" />    <link name="base_link">        <visual>            <geometry>                <cylinder radius="0.1" length="0.08" />            </geometry>             <origin xyz="0 0 0" rpy="0 0 0" />             <material name="baselink_color">                <color rgba="1.0 0.5 0.2 0.5" />            </material>        </visual>     </link>     <joint name="link2footprint" type="fixed">        <parent link="base_footprint"  />        <child link="base_link" />        <origin xyz="0 0 0.055" rpy="0 0 0" />    </joint>     <xacro:property name="wheel_radius" value="0.0325" />    <xacro:property name="wheel_length" value="0.015" />    <xacro:property name="PI" value="3.1415927" />    <xacro:property name="wheel_joint_z" value="${(base_length / 2 + lidi - wheel_radius) * -1}" />     <xacro:macro name="wheel_func" params="wheel_name flag">         <link name="${wheel_name}_wheel">            <visual>                <geometry>                    <cylinder radius="${wheel_radius}" length="${wheel_length}" />                </geometry>                 <origin xyz="0 0 0" rpy="${PI / 2} 0 0" />                 <material name="wheel_color">                    <color rgba="0 0 0 0.3" />                </material>            </visual>         </link>         <joint name="${wheel_name}2link" type="continuous">            <parent link="base_link"  />            <child link="${wheel_name}_wheel" />             <origin xyz="0 ${0.1 * flag} ${wheel_joint_z}" rpy="0 0 0" />            <axis xyz="0 1 0" />        </joint>     </xacro:macro>     <xacro:wheel_func wheel_name="left" flag="1" />    <xacro:wheel_func wheel_name="right" flag="-1" />     <xacro:property name="small_wheel_radius" value="0.0075" />    <xacro:property name="small_joint_z" value="${(base_length / 2 + lidi - small_wheel_radius) * -1}" />     <xacro:macro name="small_wheel_func" params="small_wheel_name flag">        <link name="${small_wheel_name}_wheel">            <visual>                <geometry>                    <sphere radius="${small_wheel_radius}" />                </geometry>                 <origin xyz="0 0 0" rpy="0 0 0" />                 <material name="wheel_color">                    <color rgba="0 0 0 0.3" />                </material>            </visual>         </link>         <joint name="${small_wheel_name}2link" type="continuous">            <parent link="base_link"  />            <child link="${small_wheel_name}_wheel" />             <origin xyz="${0.08 * flag} 0 ${small_joint_z}" rpy="0 0 0" />            <axis xyz="0 1 0" />        </joint>     </xacro:macro >    <xacro:small_wheel_func small_wheel_name="front" flag="1"/>    <xacro:small_wheel_func small_wheel_name="back" flag="-1"/> </robot>

保存退出,打开终端输入:

code robot_camera.urdf.xacro

将下列代码粘贴进去:

<!-- File Name : robot_camera.urdf.xacro --> <robot name="robot_test" xmlns:xacro="http://wiki.ros.org/xacro">     <xacro:property name="camera_length" value="0.02" />     <xacro:property name="camera_width" value="0.05" />     <xacro:property name="camera_height" value="0.05" />     <xacro:property name="joint_camera_x" value="0.08" />    <xacro:property name="joint_camera_y" value="0" />    <xacro:property name="joint_camera_z" value="${base_length / 2 + camera_height / 2}" />     <link name="camera">        <visual>            <geometry>                <box size="${camera_length} ${camera_width} ${camera_height}" />            </geometry>            <origin xyz="0 0 0" rpy="0 0 0" />            <material name="black">                <color rgba="0 0 0 0.8" />            </material>        </visual>    </link>     <joint name="camera2base" type="fixed">        <parent link="base_link" />        <child link="camera" />        <origin xyz="${joint_camera_x} ${joint_camera_y} ${joint_camera_z}" rpy="0 0 0" />    </joint> </robot>

保存退出,打开终端输入:

code robot_laser.urdf.xacro

将下列代码粘贴进去:

<!-- File Name : robot_laser.urdf.xacro --> <robot name="robot_test" xmlns:xacro="http://wiki.ros.org/xacro">     <xacro:property name="support_radius" value="0.01" />    <xacro:property name="support_length" value="0.15" />     <xacro:property name="laser_radius" value="0.03" />    <xacro:property name="laser_length" value="0.05" />     <xacro:property name="joint_support_x" value="0" />    <xacro:property name="joint_support_y" value="0" />    <xacro:property name="joint_support_z" value="${base_length / 2 + support_length / 2}" />     <xacro:property name="joint_laser_x" value="0" />    <xacro:property name="joint_laser_y" value="0" />    <xacro:property name="joint_laser_z" value="${support_length / 2 + laser_length / 2}" />     <link name="support">        <visual>            <geometry>                <cylinder radius="${support_radius}" length="${support_length}" />            </geometry>            <material name="yellow">                <color rgba="0.8 0.5 0.0 0.5" />            </material>        </visual>     </link>     <joint name="support2base" type="fixed">        <parent link="base_link" />        <child link="support"/>        <origin xyz="${joint_support_x} ${joint_support_y} ${joint_support_z}" rpy="0 0 0" />    </joint>    <link name="laser">        <visual>            <geometry>                <cylinder radius="${laser_radius}" length="${laser_length}" />            </geometry>            <material name="black">                <color rgba="0 0 0 0.5" />            </material>        </visual>     </link>     <joint name="laser2support" type="fixed">        <parent link="support" />        <child link="laser"/>        <origin xyz="${joint_laser_x} ${joint_laser_y} ${joint_laser_z}" rpy="0 0 0" />    </joint></robot>

保存退出,打开终端:

cd .. && mkdir launch
touch robot_test.launch && code robot_test.launch

将下列代码粘贴进去:

<!-- File Name : robot_test.launch --> <launch>    <param name="robot_description" command="$(find xacro)/xacro $(find robot_description_test)/urdf/robot.urdf.xacro" />    <node pkg="joint_state_publisher" name="joint_state_publisher" type="joint_state_publisher" />    <node pkg="robot_state_publisher" name="robot_state_publisher" type="robot_state_publisher" /></launch>

保存退出,打开终端:

cd ../../../ && echo 'source /home/m0rtzz/Workspaces/navigation_entity_test_ws/devel/setup.bash' >> ~/.bashrc && source ~/.bashrc

测试一下:

roslaunch robot_description_test robot_test.launch

756d60eb62c14cfe82eafa7e3bdf4862.png

之后Ctrl+Alt+T打开一个新的终端,输入:

rviz

4dc525d781d94b19bfe14f73cd68738f.png

将 Fixed Frame设置为base_footprint:

c37069f5d4ba47cf94e637d64a15f416.png

Add一个RobotModel:

4111cf3ff31e4bda9b90de04c5d76e8a.png

Add一个TF:

9b1fddd56a704702b30240024f4e7b65.png

cd src/entity_test/ && mkdir launch && cd launch/
touch gmapping.launch && code gmapping.launch

将下列代码粘贴进去:

<!-- File Name : gmapping.launch --> <launch>    <node pkg="gmapping" type="slam_gmapping" name="slam_gmapping" output="screen">      <remap from="scan" to="scan"/>      <param name="base_frame" value="base_footprint"/><!--底盘坐标系-->      <param name="odom_frame" value="odom"/> <!--里程计坐标系-->      <param name="map_update_interval" value="5.0"/>      <param name="maxUrange" value="16.0"/>      <param name="sigma" value="0.05"/>      <param name="kernelSize" value="1"/>      <param name="lstep" value="0.05"/>      <param name="astep" value="0.05"/>      <param name="iterations" value="5"/>      <param name="lsigma" value="0.075"/>      <param name="ogain" value="3.0"/>      <param name="lskip" value="0"/>      <param name="srr" value="0.1"/>      <param name="srt" value="0.2"/>      <param name="str" value="0.1"/>      <param name="stt" value="0.2"/>      <param name="linearUpdate" value="1.0"/>      <param name="angularUpdate" value="0.5"/>      <param name="temporalUpdate" value="3.0"/>      <param name="resampleThreshold" value="0.5"/>      <param name="particles" value="30"/>      <param name="xmin" value="-50.0"/>      <param name="ymin" value="-50.0"/>      <param name="xmax" value="50.0"/>      <param name="ymax" value="50.0"/>      <param name="delta" value="0.05"/>      <param name="llsamplerange" value="0.01"/>      <param name="llsamplestep" value="0.01"/>      <param name="lasamplerange" value="0.005"/>      <param name="lasamplestep" value="0.005"/>    </node></launch>
cd .. && mkdir map
cd launch && touch map_save.launch && code map_save.launch

将下列代码粘贴进去:

<!-- File Name : map_save.launch --> <launch>    <arg name="filename" value="$(find entity_test)/map/nav" />    <node name="map_save" pkg="map_server" type="map_saver" args="-f $(arg filename)" /></launch>
touch map_server.launch && code map_server.launch

将下列代码粘贴进去:

<!-- File Name : map_server.launch --> <launch>    <!-- 设置地图的配置文件 -->    <arg name="map" default="nav.yaml" />    <!-- 运行地图服务器,并且加载设置的地图-->    <node name="map_server" pkg="map_server" type="map_server" args="$(find entity_test)/map/$(arg map)"/></launch>
touch amcl.launch && code amcl.launch

将下列代码粘贴进去:

<!-- File Name : amcl.launch --> <launch>  <node pkg="amcl" type="amcl" name="amcl" output="screen">    <!-- Publish scans from best pose at a max of 10 Hz -->    <param name="odom_model_type" value="diff"/><!-- 里程计模式为差分 -->    <param name="odom_alpha5" value="0.1"/>    <param name="transform_tolerance" value="0.2" />    <param name="gui_publish_rate" value="10.0"/>    <param name="laser_max_beams" value="30"/>    <param name="min_particles" value="500"/>    <param name="max_particles" value="5000"/>    <param name="kld_err" value="0.05"/>    <param name="kld_z" value="0.99"/>    <param name="odom_alpha1" value="0.2"/>    <param name="odom_alpha2" value="0.2"/>    <!-- translation std dev, m -->    <param name="odom_alpha3" value="0.8"/>    <param name="odom_alpha4" value="0.2"/>    <param name="laser_z_hit" value="0.5"/>    <param name="laser_z_short" value="0.05"/>    <param name="laser_z_max" value="0.05"/>    <param name="laser_z_rand" value="0.5"/>    <param name="laser_sigma_hit" value="0.2"/>    <param name="laser_lambda_short" value="0.1"/>    <param name="laser_lambda_short" value="0.1"/>    <param name="laser_model_type" value="likelihood_field"/>    <!-- <param name="laser_model_type" value="beam"/> -->    <param name="laser_likelihood_max_dist" value="2.0"/>    <param name="update_min_d" value="0.2"/>    <param name="update_min_a" value="0.5"/>     <param name="odom_frame_id" value="odom"/><!-- 里程计坐标系 -->    <param name="base_frame_id" value="base_footprint"/><!-- 添加机器人基坐标系 -->    <param name="global_frame_id" value="map"/><!-- 添加地图坐标系 -->   </node></launch>
cd .. && mkdir param && cd param/ && touch {costmap_common_params.yaml,local_costmap_params.yaml,global_costmap_params.yaml,base_local_planner_params.yaml} && code .

将下列几个代码分别粘贴进去:

# File Name : base_local_planner_params.yaml TrajectoryPlannerROS: # Robot Configuration Parameters  max_vel_x: 0.5 # X 方向最大速度  min_vel_x: 0.1 # X 方向最小速速   max_vel_theta:  1.0 #   min_vel_theta: -1.0  min_in_place_vel_theta: 1.0   acc_lim_x: 1.0 # X 加速限制  acc_lim_y: 0.0 # Y 加速限制  acc_lim_theta: 0.6 # 角速度加速限制 # Goal Tolerance Parameters,目标公差  xy_goal_tolerance: 0.10  yaw_goal_tolerance: 0.05 # Differential-drive robot configuration# 是否是全向移动机器人  holonomic_robot: false # Forward Simulation Parameters,前进模拟参数  sim_time: 0.8  vx_samples: 18  vtheta_samples: 20  sim_granularity: 0.05
# File Name : cost_common_params.yaml #机器人几何参,如果机器人是圆形,设置 robot_radius,如果是其他形状设置 footprintrobot_radius: 0.12 #圆形# footprint: [[-0.12, -0.12], [-0.12, 0.12], [0.12, 0.12], [0.12, -0.12]] #其他形状 obstacle_range: 3.0 # 用于障碍物探测,比如: 值为 3.0,意味着检测到距离小于 3 米的障碍物时,就会引入代价地图raytrace_range: 3.5 # 用于清除障碍物,比如:值为 3.5,意味着清除代价地图中 3.5 米以外的障碍物  #膨胀半径,扩展在碰撞区域以外的代价区域,使得机器人规划路径避开障碍物inflation_radius: 0.2#代价比例系数,越大则代价值越小cost_scaling_factor: 3.0 #地图类型map_type: costmap#导航包所需要的传感器observation_sources: scan#对传感器的坐标系和数据进行配置。这个也会用于代价地图添加和清除障碍物。例如,你可以用激光雷达传感器用于在代价地图添加障碍物,再添加kinect用于导航和清除障碍物。scan: {sensor_frame: laser, data_type: LaserScan, topic: scan, marking: true, clearing: true}
# File Name : global_costmap_params.yaml global_costmap:  global_frame: map #地图坐标系  robot_base_frame: base_footprint #机器人坐标系  # 以此实现坐标变换   update_frequency: 1.0 #代价地图更新频率  publish_frequency: 1.0 #代价地图的发布频率  transform_tolerance: 0.5 #等待坐标变换发布信息的超时时间   static_map: true # 是否使用一个地图或者地图服务器来初始化全局代价地图,如果不使用静态地图,这个参数为false.
# File Name : local_costmap_params.yaml local_costmap:  global_frame: odom #里程计坐标系  robot_base_frame: base_footprint #机器人坐标系   update_frequency: 10.0 #代价地图更新频率  publish_frequency: 10.0 #代价地图的发布频率  transform_tolerance: 0.5 #等待坐标变换发布信息的超时时间   static_map: false  #不需要静态地图,可以提升导航效果  rolling_window: true #是否使用动态窗口,默认为false,在静态的全局地图中,地图不会变化  width: 3 # 局部地图宽度 单位是 m  height: 3 # 局部地图高度 单位是 m  resolution: 0.05 # 局部地图分辨率 单位是 m,一般与静态地图分辨率保持一致
cd ../launch && touch move_base.launch && code move_base.launch

将下列代码粘贴进去:

<!-- File Name : move_base.launch --> <launch>     <node pkg="move_base" type="move_base" respawn="false" name="move_base" output="screen" clear_params="true">        <rosparam file="$(find nav)/param/costmap_common_params.yaml" command="load" ns="global_costmap" />        <rosparam file="$(find nav)/param/costmap_common_params.yaml" command="load" ns="local_costmap" />        <rosparam file="$(find nav)/param/local_costmap_params.yaml" command="load" />        <rosparam file="$(find nav)/param/global_costmap_params.yaml" command="load" />        <rosparam file="$(find nav)/param/base_local_planner_params.yaml" command="load" />    </node> </launch>
touch auto_slam.launch && code auto_slam.launch

将下列代码粘贴进去:

<!-- File Name : auto_slam.launch --> <launch>    <!-- 启动SLAM节点 -->    <include file="$(find entity_test)/launch/gmapping.launch" />    <!-- 运行move_base节点 -->    <include file="$(find entity_test)/launch/move_base.launch" /></launch>

23-安装配置caffe

Reference:

https://blog.csdn.net/weixin_39161727/article/details/120136500

首先安装依赖:

sudo apt install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler libatlas-base-dev libgflags-dev libgoogle-glog-dev liblmdb-dev && sudo apt install --no-install-recommends libboost-all-dev
git clone https://gitcode.com/mirrors/BVLC/caffe.git caffe
cd caffe/ && sudo cp Makefile.config.example Makefile.config
gedit Makefile.config
## Refer to http://caffe.berkeleyvision.org/installation.html# Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN).USE_CUDNN := 1 # CPU-only switch (uncomment to build without GPU support).# CPU_ONLY := 1 # uncomment to disable IO dependencies and corresponding data layers# USE_OPENCV := 0# USE_LEVELDB := 0# USE_LMDB := 0# This code is taken from https://github.com/sh1r0/caffe-android-lib# USE_HDF5 := 0 # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)#	You should not set this flag if you will be reading LMDBs with any#	possibility of simultaneous read and write# ALLOW_LMDB_NOLOCK := 1 # Uncomment if you're using OpenCV 3OPENCV_VERSION := 3 # To customize your choice of compiler, uncomment and set the following.# N.B. the default for Linux is g++ and the default for OSX is clang++CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need.CUDA_DIR := /usr/local/cuda# On Ubuntu 14.04, if cuda tools are installed via# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:# CUDA_DIR := /usr # CUDA architecture setting: going with all of them.# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.# For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.CUDA_ARCH := #-gencode arch=compute_20,code=sm_20 \		#-gencode arch=compute_20,code=sm_21 \		#-gencode arch=compute_30,code=sm_30 \		-gencode arch=compute_35,code=sm_35 \		-gencode arch=compute_50,code=sm_50 \		-gencode arch=compute_52,code=sm_52 \		-gencode arch=compute_60,code=sm_60 \		-gencode arch=compute_61,code=sm_61 \		-gencode arch=compute_61,code=compute_61 # BLAS choice:# atlas for ATLAS (default)# mkl for MKL# open for OpenBlasBLAS := open# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.# Leave commented to accept the defaults for your choice of BLAS# (which should work)!# BLAS_INCLUDE := /path/to/your/blas# BLAS_LIB := /path/to/your/blas # Homebrew puts openblas in a directory that is not on the standard search path# BLAS_INCLUDE := $(shell brew --prefix openblas)/include# BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface.# MATLAB directory should contain the mex binary in /bin.# MATLAB_DIR := /usr/local# MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface.# We need to be able to find Python.h and numpy/arrayobject.h.PYTHON_INCLUDE := /usr/include/python2.7 \		/usr/lib/python2.7/dist-packages/numpy/core/include# Anaconda Python distribution is quite popular. Include path:# Verify anaconda location, sometimes it's in root.# ANACONDA_HOME := $(HOME)/anaconda# PYTHON_INCLUDE := $(ANACONDA_HOME)/include \		# $(ANACONDA_HOME)/include/python2.7 \		# $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include # Uncomment to use Python 3 (default is Python 2) PYTHON_LIBRARIES := boost_python3 python3.6m PYTHON_INCLUDE := /usr/include/python3.6m \                 /usr/lib/python3.6/dist-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib.PYTHON_LIB := /usr/lib# PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only)# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include# PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs)WITH_PYTHON_LAYER := 1 # Whatever else you find you need goes here.INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial/ # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies# INCLUDE_DIRS += $(shell brew --prefix)/include# LIBRARY_DIRS += $(shell brew --prefix)/lib # NCCL acceleration switch (uncomment to build with NCCL)# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)# USE_NCCL := 1 # Uncomment to use `pkg-config` to specify OpenCV library paths.# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)# USE_PKG_CONFIG := 1 # N.B. both build and distribute dirs are cleared on `make clean`BUILD_DIR := buildDISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171# DEBUG := 1 # The ID of the GPU that 'make runtest' will use to run unit tests.TEST_GPUID := 0 # enable pretty build (comment to see full commands)Q ?= @
gedit Makefile
PROJECT := caffe CONFIG_FILE := Makefile.config# Explicitly check for the config file, otherwise make -k will proceed anyway.ifeq ($(wildcard $(CONFIG_FILE)),)$(error $(CONFIG_FILE) not found. See $(CONFIG_FILE).example.)endifinclude $(CONFIG_FILE) BUILD_DIR_LINK := $(BUILD_DIR)ifeq ($(RELEASE_BUILD_DIR),)	RELEASE_BUILD_DIR := .$(BUILD_DIR)_releaseendififeq ($(DEBUG_BUILD_DIR),)	DEBUG_BUILD_DIR := .$(BUILD_DIR)_debugendif DEBUG ?= 0ifeq ($(DEBUG), 1)	BUILD_DIR := $(DEBUG_BUILD_DIR)	OTHER_BUILD_DIR := $(RELEASE_BUILD_DIR)else	BUILD_DIR := $(RELEASE_BUILD_DIR)	OTHER_BUILD_DIR := $(DEBUG_BUILD_DIR)endif # All of the directories containing code.SRC_DIRS := $(shell find * -type d -exec bash -c "find {} -maxdepth 1 \	\( -name '*.cpp' -o -name '*.proto' \) | grep -q ." \; -print) # The target shared library nameLIBRARY_NAME := $(PROJECT)LIB_BUILD_DIR := $(BUILD_DIR)/libSTATIC_NAME := $(LIB_BUILD_DIR)/lib$(LIBRARY_NAME).aDYNAMIC_VERSION_MAJOR 		:= 1DYNAMIC_VERSION_MINOR 		:= 0DYNAMIC_VERSION_REVISION 	:= 0DYNAMIC_NAME_SHORT := lib$(LIBRARY_NAME).so#DYNAMIC_SONAME_SHORT := $(DYNAMIC_NAME_SHORT).$(DYNAMIC_VERSION_MAJOR)DYNAMIC_VERSIONED_NAME_SHORT := $(DYNAMIC_NAME_SHORT).$(DYNAMIC_VERSION_MAJOR).$(DYNAMIC_VERSION_MINOR).$(DYNAMIC_VERSION_REVISION)DYNAMIC_NAME := $(LIB_BUILD_DIR)/$(DYNAMIC_VERSIONED_NAME_SHORT)COMMON_FLAGS += -DCAFFE_VERSION=$(DYNAMIC_VERSION_MAJOR).$(DYNAMIC_VERSION_MINOR).$(DYNAMIC_VERSION_REVISION) ############################### Get all source files############################### CXX_SRCS are the source files excluding the test ones.CXX_SRCS := $(shell find src/$(PROJECT) ! -name "test_*.cpp" -name "*.cpp")# CU_SRCS are the cuda source filesCU_SRCS := $(shell find src/$(PROJECT) ! -name "test_*.cu" -name "*.cu")# TEST_SRCS are the test source filesTEST_MAIN_SRC := src/$(PROJECT)/test/test_caffe_main.cppTEST_SRCS := $(shell find src/$(PROJECT) -name "test_*.cpp")TEST_SRCS := $(filter-out $(TEST_MAIN_SRC), $(TEST_SRCS))TEST_CU_SRCS := $(shell find src/$(PROJECT) -name "test_*.cu")GTEST_SRC := src/gtest/gtest-all.cpp# TOOL_SRCS are the source files for the tool binariesTOOL_SRCS := $(shell find tools -name "*.cpp")# EXAMPLE_SRCS are the source files for the example binariesEXAMPLE_SRCS := $(shell find examples -name "*.cpp")# BUILD_INCLUDE_DIR contains any generated header files we want to include.BUILD_INCLUDE_DIR := $(BUILD_DIR)/src# PROTO_SRCS are the protocol buffer definitionsPROTO_SRC_DIR := src/$(PROJECT)/protoPROTO_SRCS := $(wildcard $(PROTO_SRC_DIR)/*.proto)# PROTO_BUILD_DIR will contain the .cc and obj files generated from# PROTO_SRCS; PROTO_BUILD_INCLUDE_DIR will contain the .h header filesPROTO_BUILD_DIR := $(BUILD_DIR)/$(PROTO_SRC_DIR)PROTO_BUILD_INCLUDE_DIR := $(BUILD_INCLUDE_DIR)/$(PROJECT)/proto# NONGEN_CXX_SRCS includes all source/header files except those generated# automatically (e.g., by proto).NONGEN_CXX_SRCS := $(shell find \	src/$(PROJECT) \	include/$(PROJECT) \	python/$(PROJECT) \	matlab/+$(PROJECT)/private \	examples \	tools \	-name "*.cpp" -or -name "*.hpp" -or -name "*.cu" -or -name "*.cuh")LINT_SCRIPT := scripts/cpp_lint.pyLINT_OUTPUT_DIR := $(BUILD_DIR)/.lintLINT_EXT := lint.txtLINT_OUTPUTS := $(addsuffix .$(LINT_EXT), $(addprefix $(LINT_OUTPUT_DIR)/, $(NONGEN_CXX_SRCS)))EMPTY_LINT_REPORT := $(BUILD_DIR)/.$(LINT_EXT)NONEMPTY_LINT_REPORT := $(BUILD_DIR)/$(LINT_EXT)# PY$(PROJECT)_SRC is the python wrapper for $(PROJECT)PY$(PROJECT)_SRC := python/$(PROJECT)/_$(PROJECT).cppPY$(PROJECT)_SO := python/$(PROJECT)/_$(PROJECT).soPY$(PROJECT)_HXX := include/$(PROJECT)/layers/python_layer.hpp# MAT$(PROJECT)_SRC is the mex entrance point of matlab package for $(PROJECT)MAT$(PROJECT)_SRC := matlab/+$(PROJECT)/private/$(PROJECT)_.cppifneq ($(MATLAB_DIR),)	MAT_SO_EXT := $(shell $(MATLAB_DIR)/bin/mexext)endifMAT$(PROJECT)_SO := matlab/+$(PROJECT)/private/$(PROJECT)_.$(MAT_SO_EXT) ############################### Derive generated files############################### The generated files for protocol buffersPROTO_GEN_HEADER_SRCS := $(addprefix $(PROTO_BUILD_DIR)/, \		$(notdir ${PROTO_SRCS:.proto=.pb.h}))PROTO_GEN_HEADER := $(addprefix $(PROTO_BUILD_INCLUDE_DIR)/, \		$(notdir ${PROTO_SRCS:.proto=.pb.h}))PROTO_GEN_CC := $(addprefix $(BUILD_DIR)/, ${PROTO_SRCS:.proto=.pb.cc})PY_PROTO_BUILD_DIR := python/$(PROJECT)/protoPY_PROTO_INIT := python/$(PROJECT)/proto/__init__.pyPROTO_GEN_PY := $(foreach file,${PROTO_SRCS:.proto=_pb2.py}, \		$(PY_PROTO_BUILD_DIR)/$(notdir $(file)))# The objects corresponding to the source files# These objects will be linked into the final shared library, so we# exclude the tool, example, and test objects.CXX_OBJS := $(addprefix $(BUILD_DIR)/, ${CXX_SRCS:.cpp=.o})CU_OBJS := $(addprefix $(BUILD_DIR)/cuda/, ${CU_SRCS:.cu=.o})PROTO_OBJS := ${PROTO_GEN_CC:.cc=.o}OBJS := $(PROTO_OBJS) $(CXX_OBJS) $(CU_OBJS)# tool, example, and test objectsTOOL_OBJS := $(addprefix $(BUILD_DIR)/, ${TOOL_SRCS:.cpp=.o})TOOL_BUILD_DIR := $(BUILD_DIR)/toolsTEST_CXX_BUILD_DIR := $(BUILD_DIR)/src/$(PROJECT)/testTEST_CU_BUILD_DIR := $(BUILD_DIR)/cuda/src/$(PROJECT)/testTEST_CXX_OBJS := $(addprefix $(BUILD_DIR)/, ${TEST_SRCS:.cpp=.o})TEST_CU_OBJS := $(addprefix $(BUILD_DIR)/cuda/, ${TEST_CU_SRCS:.cu=.o})TEST_OBJS := $(TEST_CXX_OBJS) $(TEST_CU_OBJS)GTEST_OBJ := $(addprefix $(BUILD_DIR)/, ${GTEST_SRC:.cpp=.o})EXAMPLE_OBJS := $(addprefix $(BUILD_DIR)/, ${EXAMPLE_SRCS:.cpp=.o})# Output files for automatic dependency generationDEPS := ${CXX_OBJS:.o=.d} ${CU_OBJS:.o=.d} ${TEST_CXX_OBJS:.o=.d} \	${TEST_CU_OBJS:.o=.d} $(BUILD_DIR)/${MAT$(PROJECT)_SO:.$(MAT_SO_EXT)=.d}# tool, example, and test binsTOOL_BINS := ${TOOL_OBJS:.o=.bin}EXAMPLE_BINS := ${EXAMPLE_OBJS:.o=.bin}# symlinks to tool bins without the ".bin" extensionTOOL_BIN_LINKS := ${TOOL_BINS:.bin=}# Put the test binaries in build/test for convenience.TEST_BIN_DIR := $(BUILD_DIR)/testTEST_CU_BINS := $(addsuffix .testbin,$(addprefix $(TEST_BIN_DIR)/, \		$(foreach obj,$(TEST_CU_OBJS),$(basename $(notdir $(obj))))))TEST_CXX_BINS := $(addsuffix .testbin,$(addprefix $(TEST_BIN_DIR)/, \		$(foreach obj,$(TEST_CXX_OBJS),$(basename $(notdir $(obj))))))TEST_BINS := $(TEST_CXX_BINS) $(TEST_CU_BINS)# TEST_ALL_BIN is the test binary that links caffe dynamically.TEST_ALL_BIN := $(TEST_BIN_DIR)/test_all.testbin ############################### Derive compiler warning dump locations##############################WARNS_EXT := warnings.txtCXX_WARNS := $(addprefix $(BUILD_DIR)/, ${CXX_SRCS:.cpp=.o.$(WARNS_EXT)})CU_WARNS := $(addprefix $(BUILD_DIR)/cuda/, ${CU_SRCS:.cu=.o.$(WARNS_EXT)})TOOL_WARNS := $(addprefix $(BUILD_DIR)/, ${TOOL_SRCS:.cpp=.o.$(WARNS_EXT)})EXAMPLE_WARNS := $(addprefix $(BUILD_DIR)/, ${EXAMPLE_SRCS:.cpp=.o.$(WARNS_EXT)})TEST_WARNS := $(addprefix $(BUILD_DIR)/, ${TEST_SRCS:.cpp=.o.$(WARNS_EXT)})TEST_CU_WARNS := $(addprefix $(BUILD_DIR)/cuda/, ${TEST_CU_SRCS:.cu=.o.$(WARNS_EXT)})ALL_CXX_WARNS := $(CXX_WARNS) $(TOOL_WARNS) $(EXAMPLE_WARNS) $(TEST_WARNS)ALL_CU_WARNS := $(CU_WARNS) $(TEST_CU_WARNS)ALL_WARNS := $(ALL_CXX_WARNS) $(ALL_CU_WARNS) EMPTY_WARN_REPORT := $(BUILD_DIR)/.$(WARNS_EXT)NONEMPTY_WARN_REPORT := $(BUILD_DIR)/$(WARNS_EXT) ############################### Derive include and lib directories##############################CUDA_INCLUDE_DIR := $(CUDA_DIR)/include CUDA_LIB_DIR :=# add <cuda>/lib64 only if it existsifneq ("$(wildcard $(CUDA_DIR)/lib64)","")	CUDA_LIB_DIR += $(CUDA_DIR)/lib64endifCUDA_LIB_DIR += $(CUDA_DIR)/lib INCLUDE_DIRS += $(BUILD_INCLUDE_DIR) ./src ./includeifneq ($(CPU_ONLY), 1)	INCLUDE_DIRS += $(CUDA_INCLUDE_DIR)	LIBRARY_DIRS += $(CUDA_LIB_DIR)	LIBRARIES := cudart cublas curandendif LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_serial_hl hdf5_serial # handle IO dependenciesUSE_LEVELDB ?= 1USE_LMDB ?= 1# This code is taken from https://github.com/sh1r0/caffe-android-libUSE_HDF5 ?= 1USE_OPENCV ?= 1 ifeq ($(USE_LEVELDB), 1)	LIBRARIES += leveldb snappyendififeq ($(USE_LMDB), 1)	LIBRARIES += lmdbendif# This code is taken from https://github.com/sh1r0/caffe-android-libifeq ($(USE_HDF5), 1)	LIBRARIES += hdf5_hl hdf5endififeq ($(USE_OPENCV), 1)	LIBRARIES += opencv_core opencv_highgui opencv_imgproc 	ifeq ($(OPENCV_VERSION), 3)		LIBRARIES += opencv_imgcodecs	endif endifPYTHON_LIBRARIES ?= boost_python python2.7WARNINGS := -Wall -Wno-sign-compare ############################### Set build directories############################## DISTRIBUTE_DIR ?= distributeDISTRIBUTE_SUBDIRS := $(DISTRIBUTE_DIR)/bin $(DISTRIBUTE_DIR)/libDIST_ALIASES := distifneq ($(strip $(DISTRIBUTE_DIR)),distribute)		DIST_ALIASES += distributeendif ALL_BUILD_DIRS := $(sort $(BUILD_DIR) $(addprefix $(BUILD_DIR)/, $(SRC_DIRS)) \	$(addprefix $(BUILD_DIR)/cuda/, $(SRC_DIRS)) \	$(LIB_BUILD_DIR) $(TEST_BIN_DIR) $(PY_PROTO_BUILD_DIR) $(LINT_OUTPUT_DIR) \	$(DISTRIBUTE_SUBDIRS) $(PROTO_BUILD_INCLUDE_DIR)) ############################### Set directory for Doxygen-generated documentation##############################DOXYGEN_CONFIG_FILE ?= ./.Doxyfile# should be the same as OUTPUT_DIRECTORY in the .DoxyfileDOXYGEN_OUTPUT_DIR ?= ./doxygenDOXYGEN_COMMAND ?= doxygen# All the files that might have Doxygen documentation.DOXYGEN_SOURCES := $(shell find \	src/$(PROJECT) \	include/$(PROJECT) \	python/ \	matlab/ \	examples \	tools \	-name "*.cpp" -or -name "*.hpp" -or -name "*.cu" -or -name "*.cuh" -or \        -name "*.py" -or -name "*.m")DOXYGEN_SOURCES += $(DOXYGEN_CONFIG_FILE)  ############################### Configure build############################## # Determine platformUNAME := $(shell uname -s)ifeq ($(UNAME), Linux)	LINUX := 1else ifeq ($(UNAME), Darwin)	OSX := 1	OSX_MAJOR_VERSION := $(shell sw_vers -productVersion | cut -f 1 -d .)	OSX_MINOR_VERSION := $(shell sw_vers -productVersion | cut -f 2 -d .)endif # Linuxifeq ($(LINUX), 1)	CXX ?= /usr/bin/g++	GCCVERSION := $(shell $(CXX) -dumpversion | cut -f1,2 -d.)	# older versions of gcc are too dumb to build boost with -Wuninitalized	ifeq ($(shell echo | awk '{exit $(GCCVERSION) < 4.6;}'), 1)		WARNINGS += -Wno-uninitialized	endif	# boost::thread is reasonably called boost_thread (compare OS X)	# We will also explicitly add stdc++ to the link target.	LIBRARIES += boost_thread stdc++	VERSIONFLAGS += -Wl,-soname,$(DYNAMIC_VERSIONED_NAME_SHORT) -Wl,-rpath,$(ORIGIN)/../libendif # OS X:# clang++ instead of g++# libstdc++ for NVCC compatibility on OS X >= 10.9 with CUDA < 7.0ifeq ($(OSX), 1)	CXX := /usr/bin/clang++	ifneq ($(CPU_ONLY), 1)		CUDA_VERSION := $(shell $(CUDA_DIR)/bin/nvcc -V | grep -o 'release [0-9.]*' | tr -d '[a-z ]')		ifeq ($(shell echo | awk '{exit $(CUDA_VERSION) < 7.0;}'), 1)			CXXFLAGS += -stdlib=libstdc++			LINKFLAGS += -stdlib=libstdc++		endif		# clang throws this warning for cuda headers		WARNINGS += -Wno-unneeded-internal-declaration		# 10.11 strips DYLD_* env vars so link CUDA (rpath is available on 10.5+)		OSX_10_OR_LATER   := $(shell [ $(OSX_MAJOR_VERSION) -ge 10 ] && echo true)		OSX_10_5_OR_LATER := $(shell [ $(OSX_MINOR_VERSION) -ge 5 ] && echo true)		ifeq ($(OSX_10_OR_LATER),true)			ifeq ($(OSX_10_5_OR_LATER),true)				LDFLAGS += -Wl,-rpath,$(CUDA_LIB_DIR)			endif		endif	endif	# gtest needs to use its own tuple to not conflict with clang	COMMON_FLAGS += -DGTEST_USE_OWN_TR1_TUPLE=1	# boost::thread is called boost_thread-mt to mark multithreading on OS X	LIBRARIES += boost_thread-mt	# we need to explicitly ask for the rpath to be obeyed	ORIGIN := @loader_path	VERSIONFLAGS += -Wl,-install_name,@rpath/$(DYNAMIC_VERSIONED_NAME_SHORT) -Wl,-rpath,$(ORIGIN)/../../build/libelse	ORIGIN := \$$ORIGINendif # Custom compilerifdef CUSTOM_CXX	CXX := $(CUSTOM_CXX)endif # Static linkingifneq (,$(findstring clang++,$(CXX)))	STATIC_LINK_COMMAND := -Wl,-force_load $(STATIC_NAME)else ifneq (,$(findstring g++,$(CXX)))	STATIC_LINK_COMMAND := -Wl,--whole-archive $(STATIC_NAME) -Wl,--no-whole-archiveelse  # The following line must not be indented with a tab, since we are not inside a target  $(error Cannot static link with the $(CXX) compiler)endif # Debuggingifeq ($(DEBUG), 1)	COMMON_FLAGS += -DDEBUG -g -O0	NVCCFLAGS += -Gelse	COMMON_FLAGS += -DNDEBUG -O2endif # cuDNN acceleration configuration.ifeq ($(USE_CUDNN), 1)	LIBRARIES += cudnn	COMMON_FLAGS += -DUSE_CUDNNendif # NCCL acceleration configurationifeq ($(USE_NCCL), 1)	LIBRARIES += nccl	COMMON_FLAGS += -DUSE_NCCLendif # configure IO librariesifeq ($(USE_OPENCV), 1)	COMMON_FLAGS += -DUSE_OPENCVendififeq ($(USE_LEVELDB), 1)	COMMON_FLAGS += -DUSE_LEVELDBendififeq ($(USE_LMDB), 1)	COMMON_FLAGS += -DUSE_LMDBifeq ($(ALLOW_LMDB_NOLOCK), 1)	COMMON_FLAGS += -DALLOW_LMDB_NOLOCKendifendif# This code is taken from https://github.com/sh1r0/caffe-android-libifeq ($(USE_HDF5), 1)	COMMON_FLAGS += -DUSE_HDF5endif # CPU-only configurationifeq ($(CPU_ONLY), 1)	OBJS := $(PROTO_OBJS) $(CXX_OBJS)	TEST_OBJS := $(TEST_CXX_OBJS)	TEST_BINS := $(TEST_CXX_BINS)	ALL_WARNS := $(ALL_CXX_WARNS)	TEST_FILTER := --gtest_filter="-*GPU*"	COMMON_FLAGS += -DCPU_ONLYendif # Python layer supportifeq ($(WITH_PYTHON_LAYER), 1)	COMMON_FLAGS += -DWITH_PYTHON_LAYER	LIBRARIES += $(PYTHON_LIBRARIES)endif # BLAS configuration (default = ATLAS)BLAS ?= atlasifeq ($(BLAS), mkl)	# MKL	LIBRARIES += mkl_rt	COMMON_FLAGS += -DUSE_MKL	MKLROOT ?= /opt/intel/mkl	BLAS_INCLUDE ?= $(MKLROOT)/include	BLAS_LIB ?= $(MKLROOT)/lib $(MKLROOT)/lib/intel64else ifeq ($(BLAS), open)	# OpenBLAS	LIBRARIES += openblaselse	# ATLAS	ifeq ($(LINUX), 1)		ifeq ($(BLAS), atlas)			# Linux simply has cblas and atlas			LIBRARIES += cblas atlas		endif	else ifeq ($(OSX), 1)		# OS X packages atlas as the vecLib framework		LIBRARIES += cblas		# 10.10 has accelerate while 10.9 has veclib		XCODE_CLT_VER := $(shell pkgutil --pkg-info=com.apple.pkg.CLTools_Executables | grep 'version' | sed 's/[^0-9]*\([0-9]\).*/\1/')		XCODE_CLT_GEQ_7 := $(shell [ $(XCODE_CLT_VER) -gt 6 ] && echo 1)		XCODE_CLT_GEQ_6 := $(shell [ $(XCODE_CLT_VER) -gt 5 ] && echo 1)		ifeq ($(XCODE_CLT_GEQ_7), 1)			BLAS_INCLUDE ?= /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/$(shell ls /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/ | sort | tail -1)/System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/Headers		else ifeq ($(XCODE_CLT_GEQ_6), 1)			BLAS_INCLUDE ?= /System/Library/Frameworks/Accelerate.framework/Versions/Current/Frameworks/vecLib.framework/Headers/			LDFLAGS += -framework Accelerate		else			BLAS_INCLUDE ?= /System/Library/Frameworks/vecLib.framework/Versions/Current/Headers/			LDFLAGS += -framework vecLib		endif	endifendifINCLUDE_DIRS += $(BLAS_INCLUDE)LIBRARY_DIRS += $(BLAS_LIB) LIBRARY_DIRS += $(LIB_BUILD_DIR) # Automatic dependency generation (nvcc is handled separately)CXXFLAGS += -MMD -MP # Complete build flags.COMMON_FLAGS += $(foreach includedir,$(INCLUDE_DIRS),-I$(includedir))CXXFLAGS += -pthread -fPIC $(COMMON_FLAGS) $(WARNINGS)NVCCFLAGS += -ccbin=$(CXX) -Xcompiler -fPIC $(COMMON_FLAGS)NVCCFLAGS += -D_FORCE_INLINES -ccbin=$(CXX) -Xcompiler -fPIC $(COMMON_FLAGS)# mex may invoke an older gcc that is too liberal with -WuninitalizedMATLAB_CXXFLAGS := $(CXXFLAGS) -Wno-uninitializedLINKFLAGS += -pthread -fPIC $(COMMON_FLAGS) $(WARNINGS) USE_PKG_CONFIG ?= 0ifeq ($(USE_PKG_CONFIG), 1)	PKG_CONFIG := $(shell pkg-config opencv --libs)else	PKG_CONFIG :=endifLDFLAGS += $(foreach librarydir,$(LIBRARY_DIRS),-L$(librarydir)) $(PKG_CONFIG) \		$(foreach library,$(LIBRARIES),-l$(library))PYTHON_LDFLAGS := $(LDFLAGS) $(foreach library,$(PYTHON_LIBRARIES),-l$(library)) # 'superclean' target recursively* deletes all files ending with an extension# in $(SUPERCLEAN_EXTS) below.  This may be useful if you've built older# versions of Caffe that do not place all generated files in a location known# to the 'clean' target.## 'supercleanlist' will list the files to be deleted by make superclean.## * Recursive with the exception that symbolic links are never followed, per the# default behavior of 'find'.SUPERCLEAN_EXTS := .so .a .o .bin .testbin .pb.cc .pb.h _pb2.py .cuo # Set the sub-targets of the 'everything' target.EVERYTHING_TARGETS := all py$(PROJECT) test warn lint# Only build matcaffe as part of "everything" if MATLAB_DIR is specified.ifneq ($(MATLAB_DIR),)	EVERYTHING_TARGETS += mat$(PROJECT)endif ############################### Define build targets##############################.PHONY: all lib test clean docs linecount lint lintclean tools examples $(DIST_ALIASES) \	py mat py$(PROJECT) mat$(PROJECT) proto runtest \	superclean supercleanlist supercleanfiles warn everything all: lib tools examples lib: $(STATIC_NAME) $(DYNAMIC_NAME) everything: $(EVERYTHING_TARGETS) linecount:	cloc --read-lang-def=$(PROJECT).cloc \		src/$(PROJECT) include/$(PROJECT) tools examples \		python matlab lint: $(EMPTY_LINT_REPORT) lintclean:	@ $(RM) -r $(LINT_OUTPUT_DIR) $(EMPTY_LINT_REPORT) $(NONEMPTY_LINT_REPORT) docs: $(DOXYGEN_OUTPUT_DIR)	@ cd ./docs ; ln -sfn ../$(DOXYGEN_OUTPUT_DIR)/html doxygen $(DOXYGEN_OUTPUT_DIR): $(DOXYGEN_CONFIG_FILE) $(DOXYGEN_SOURCES)	$(DOXYGEN_COMMAND) $(DOXYGEN_CONFIG_FILE) $(EMPTY_LINT_REPORT): $(LINT_OUTPUTS) | $(BUILD_DIR)	@ cat $(LINT_OUTPUTS) > $@	@ if [ -s "$@" ]; then \		cat $@; \		mv $@ $(NONEMPTY_LINT_REPORT); \		echo "Found one or more lint errors."; \		exit 1; \	  fi; \	  $(RM) $(NONEMPTY_LINT_REPORT); \	  echo "No lint errors!"; $(LINT_OUTPUTS): $(LINT_OUTPUT_DIR)/%.lint.txt : % $(LINT_SCRIPT) | $(LINT_OUTPUT_DIR)	@ mkdir -p $(dir $@)	@ python $(LINT_SCRIPT) $< 2>&1 \		| grep -v "^Done processing " \		| grep -v "^Total errors found: 0" \		> $@ \		|| true test: $(TEST_ALL_BIN) $(TEST_ALL_DYNLINK_BIN) $(TEST_BINS) tools: $(TOOL_BINS) $(TOOL_BIN_LINKS) examples: $(EXAMPLE_BINS) py$(PROJECT): py py: $(PY$(PROJECT)_SO) $(PROTO_GEN_PY) $(PY$(PROJECT)_SO): $(PY$(PROJECT)_SRC) $(PY$(PROJECT)_HXX) | $(DYNAMIC_NAME)	@ echo CXX/LD -o $@ $<	$(Q)$(CXX) -shared -o $@ $(PY$(PROJECT)_SRC) \		-o $@ $(LINKFLAGS) -l$(LIBRARY_NAME) $(PYTHON_LDFLAGS) \		-Wl,-rpath,$(ORIGIN)/../../build/lib mat$(PROJECT): mat mat: $(MAT$(PROJECT)_SO) $(MAT$(PROJECT)_SO): $(MAT$(PROJECT)_SRC) $(STATIC_NAME)	@ if [ -z "$(MATLAB_DIR)" ]; then \		echo "MATLAB_DIR must be specified in $(CONFIG_FILE)" \			"to build mat$(PROJECT)."; \		exit 1; \	fi	@ echo MEX $<	$(Q)$(MATLAB_DIR)/bin/mex $(MAT$(PROJECT)_SRC) \			CXX="$(CXX)" \			CXXFLAGS="\$$CXXFLAGS $(MATLAB_CXXFLAGS)" \			CXXLIBS="\$$CXXLIBS $(STATIC_LINK_COMMAND) $(LDFLAGS)" -output $@	@ if [ -f "$(PROJECT)_.d" ]; then \		mv -f $(PROJECT)_.d $(BUILD_DIR)/${MAT$(PROJECT)_SO:.$(MAT_SO_EXT)=.d}; \	fi runtest: $(TEST_ALL_BIN)	$(TOOL_BUILD_DIR)/caffe	$(TEST_ALL_BIN) $(TEST_GPUID) --gtest_shuffle $(TEST_FILTER) pytest: py	cd python; python -m unittest discover -s caffe/test mattest: mat	cd matlab; $(MATLAB_DIR)/bin/matlab -nodisplay -r 'caffe.run_tests(), exit()' warn: $(EMPTY_WARN_REPORT) $(EMPTY_WARN_REPORT): $(ALL_WARNS) | $(BUILD_DIR)	@ cat $(ALL_WARNS) > $@	@ if [ -s "$@" ]; then \		cat $@; \		mv $@ $(NONEMPTY_WARN_REPORT); \		echo "Compiler produced one or more warnings."; \		exit 1; \	  fi; \	  $(RM) $(NONEMPTY_WARN_REPORT); \	  echo "No compiler warnings!"; $(ALL_WARNS): %.o.$(WARNS_EXT) : %.o $(BUILD_DIR_LINK): $(BUILD_DIR)/.linked # Create a target ".linked" in this BUILD_DIR to tell Make that the "build" link# is currently correct, then delete the one in the OTHER_BUILD_DIR in case it# exists and $(DEBUG) is toggled later.$(BUILD_DIR)/.linked:	@ mkdir -p $(BUILD_DIR)	@ $(RM) $(OTHER_BUILD_DIR)/.linked	@ $(RM) -r $(BUILD_DIR_LINK)	@ ln -s $(BUILD_DIR) $(BUILD_DIR_LINK)	@ touch $@ $(ALL_BUILD_DIRS): | $(BUILD_DIR_LINK)	@ mkdir -p $@ $(DYNAMIC_NAME): $(OBJS) | $(LIB_BUILD_DIR)	@ echo LD -o $@	$(Q)$(CXX) -shared -o $@ $(OBJS) $(VERSIONFLAGS) $(LINKFLAGS) $(LDFLAGS)	@ cd $(BUILD_DIR)/lib; rm -f $(DYNAMIC_NAME_SHORT);   ln -s $(DYNAMIC_VERSIONED_NAME_SHORT) $(DYNAMIC_NAME_SHORT) $(STATIC_NAME): $(OBJS) | $(LIB_BUILD_DIR)	@ echo AR -o $@	$(Q)ar rcs $@ $(OBJS) $(BUILD_DIR)/%.o: %.cpp $(PROTO_GEN_HEADER) | $(ALL_BUILD_DIRS)	@ echo CXX $<	$(Q)$(CXX) $< $(CXXFLAGS) -c -o $@ 2> $@.$(WARNS_EXT) \		|| (cat $@.$(WARNS_EXT); exit 1)	@ cat $@.$(WARNS_EXT) $(PROTO_BUILD_DIR)/%.pb.o: $(PROTO_BUILD_DIR)/%.pb.cc $(PROTO_GEN_HEADER) \		| $(PROTO_BUILD_DIR)	@ echo CXX $<	$(Q)$(CXX) $< $(CXXFLAGS) -c -o $@ 2> $@.$(WARNS_EXT) \		|| (cat $@.$(WARNS_EXT); exit 1)	@ cat $@.$(WARNS_EXT) $(BUILD_DIR)/cuda/%.o: %.cu | $(ALL_BUILD_DIRS)	@ echo NVCC $<	$(Q)$(CUDA_DIR)/bin/nvcc $(NVCCFLAGS) $(CUDA_ARCH) -M $< -o ${@:.o=.d} \		-odir $(@D)	$(Q)$(CUDA_DIR)/bin/nvcc $(NVCCFLAGS) $(CUDA_ARCH) -c $< -o $@ 2> $@.$(WARNS_EXT) \		|| (cat $@.$(WARNS_EXT); exit 1)	@ cat $@.$(WARNS_EXT) $(TEST_ALL_BIN): $(TEST_MAIN_SRC) $(TEST_OBJS) $(GTEST_OBJ) \		| $(DYNAMIC_NAME) $(TEST_BIN_DIR)	@ echo CXX/LD -o $@ $<	$(Q)$(CXX) $(TEST_MAIN_SRC) $(TEST_OBJS) $(GTEST_OBJ) \		-o $@ $(LINKFLAGS) $(LDFLAGS) -l$(LIBRARY_NAME) -Wl,-rpath,$(ORIGIN)/../lib $(TEST_CU_BINS): $(TEST_BIN_DIR)/%.testbin: $(TEST_CU_BUILD_DIR)/%.o \	$(GTEST_OBJ) | $(DYNAMIC_NAME) $(TEST_BIN_DIR)	@ echo LD $<	$(Q)$(CXX) $(TEST_MAIN_SRC) $< $(GTEST_OBJ) \		-o $@ $(LINKFLAGS) $(LDFLAGS) -l$(LIBRARY_NAME) -Wl,-rpath,$(ORIGIN)/../lib $(TEST_CXX_BINS): $(TEST_BIN_DIR)/%.testbin: $(TEST_CXX_BUILD_DIR)/%.o \	$(GTEST_OBJ) | $(DYNAMIC_NAME) $(TEST_BIN_DIR)	@ echo LD $<	$(Q)$(CXX) $(TEST_MAIN_SRC) $< $(GTEST_OBJ) \		-o $@ $(LINKFLAGS) $(LDFLAGS) -l$(LIBRARY_NAME) -Wl,-rpath,$(ORIGIN)/../lib # Target for extension-less symlinks to tool binaries with extension '*.bin'.$(TOOL_BUILD_DIR)/%: $(TOOL_BUILD_DIR)/%.bin | $(TOOL_BUILD_DIR)	@ $(RM) $@	@ ln -s $(notdir $<) $@ $(TOOL_BINS): %.bin : %.o | $(DYNAMIC_NAME)	@ echo CXX/LD -o $@	$(Q)$(CXX) $< -o $@ $(LINKFLAGS) -l$(LIBRARY_NAME) $(LDFLAGS) \		-Wl,-rpath,$(ORIGIN)/../lib $(EXAMPLE_BINS): %.bin : %.o | $(DYNAMIC_NAME)	@ echo CXX/LD -o $@	$(Q)$(CXX) $< -o $@ $(LINKFLAGS) -l$(LIBRARY_NAME) $(LDFLAGS) \		-Wl,-rpath,$(ORIGIN)/../../lib proto: $(PROTO_GEN_CC) $(PROTO_GEN_HEADER) $(PROTO_BUILD_DIR)/%.pb.cc $(PROTO_BUILD_DIR)/%.pb.h : \		$(PROTO_SRC_DIR)/%.proto | $(PROTO_BUILD_DIR)	@ echo PROTOC $<	$(Q)protoc --proto_path=$(PROTO_SRC_DIR) --cpp_out=$(PROTO_BUILD_DIR) $< $(PY_PROTO_BUILD_DIR)/%_pb2.py : $(PROTO_SRC_DIR)/%.proto \		$(PY_PROTO_INIT) | $(PY_PROTO_BUILD_DIR)	@ echo PROTOC \(python\) $<	$(Q)protoc --proto_path=src --python_out=python $< $(PY_PROTO_INIT): | $(PY_PROTO_BUILD_DIR)	touch $(PY_PROTO_INIT) clean:	@- $(RM) -rf $(ALL_BUILD_DIRS)	@- $(RM) -rf $(OTHER_BUILD_DIR)	@- $(RM) -rf $(BUILD_DIR_LINK)	@- $(RM) -rf $(DISTRIBUTE_DIR)	@- $(RM) $(PY$(PROJECT)_SO)	@- $(RM) $(MAT$(PROJECT)_SO) supercleanfiles:	$(eval SUPERCLEAN_FILES := $(strip \			$(foreach ext,$(SUPERCLEAN_EXTS), $(shell find . -name '*$(ext)' \			-not -path './data/*')))) supercleanlist: supercleanfiles	@ \	if [ -z "$(SUPERCLEAN_FILES)" ]; then \		echo "No generated files found."; \	else \		echo $(SUPERCLEAN_FILES) | tr ' ' '\n'; \	fi superclean: clean supercleanfiles	@ \	if [ -z "$(SUPERCLEAN_FILES)" ]; then \		echo "No generated files found."; \	else \		echo "Deleting the following generated files:"; \		echo $(SUPERCLEAN_FILES) | tr ' ' '\n'; \		$(RM) $(SUPERCLEAN_FILES); \	fi $(DIST_ALIASES): $(DISTRIBUTE_DIR) $(DISTRIBUTE_DIR): all py | $(DISTRIBUTE_SUBDIRS)	# add proto	cp -r src/caffe/proto $(DISTRIBUTE_DIR)/	# add include	cp -r include $(DISTRIBUTE_DIR)/	mkdir -p $(DISTRIBUTE_DIR)/include/caffe/proto	cp $(PROTO_GEN_HEADER_SRCS) $(DISTRIBUTE_DIR)/include/caffe/proto	# add tool and example binaries	cp $(TOOL_BINS) $(DISTRIBUTE_DIR)/bin	cp $(EXAMPLE_BINS) $(DISTRIBUTE_DIR)/bin	# add libraries	cp $(STATIC_NAME) $(DISTRIBUTE_DIR)/lib	install -m 644 $(DYNAMIC_NAME) $(DISTRIBUTE_DIR)/lib	cd $(DISTRIBUTE_DIR)/lib; rm -f $(DYNAMIC_NAME_SHORT);   ln -s $(DYNAMIC_VERSIONED_NAME_SHORT) $(DYNAMIC_NAME_SHORT)	# add python - it's not the standard way, indeed...	cp -r python $(DISTRIBUTE_DIR)/ -include $(DEPS)
cd python/

使用阿里云镜像安装依赖库:

for req in $(cat requirements.txt); do pip3 install $req -i https://mirrors.aliyun.com/pypi/simple/; done
cd .. && sudo make clean
sudo make all -j$(nproc)

由于caffe最后支持的版本是cuDNN7.6.5,为了能在cuDNN8的环境下编译通过,需要修改两个cpp文件,路径为/caffe/src/caffe/layers下的cudnn_conv_layer.cpp和cudnn_deconv_layer.cpp两个文件,分别将他们内容替换为:

/** * @File Name : cudnn_conv_layer.cpp */ #ifdef USE_CUDNN#include <algorithm>#include <vector> #include "caffe/layers/cudnn_conv_layer.hpp" namespace caffe{ // Set to three for the benefit of the backward pass, which// can use separate streams for calculating the gradient w.r.t.// bias, filter weights, and bottom data for each group independently#define CUDNN_STREAMS_PER_GROUP 3   /**   * TODO(dox) explain cuDNN interface   */  template <typename Dtype>  void CuDNNConvolutionLayer<Dtype>::LayerSetUp(      const vector<Blob<Dtype> *> &bottom, const vector<Blob<Dtype> *> &top)  {    ConvolutionLayer<Dtype>::LayerSetUp(bottom, top);    // Initialize CUDA streams and cuDNN.    stream_ = new cudaStream_t[this->group_ * CUDNN_STREAMS_PER_GROUP];    handle_ = new cudnnHandle_t[this->group_ * CUDNN_STREAMS_PER_GROUP];     // Initialize algorithm arrays    fwd_algo_ = new cudnnConvolutionFwdAlgo_t[bottom.size()];    bwd_filter_algo_ = new cudnnConvolutionBwdFilterAlgo_t[bottom.size()];    bwd_data_algo_ = new cudnnConvolutionBwdDataAlgo_t[bottom.size()];     // initialize size arrays    workspace_fwd_sizes_ = new size_t[bottom.size()];    workspace_bwd_filter_sizes_ = new size_t[bottom.size()];    workspace_bwd_data_sizes_ = new size_t[bottom.size()];     // workspace data    workspaceSizeInBytes = 0;    workspaceData = NULL;    workspace = new void *[this->group_ * CUDNN_STREAMS_PER_GROUP];     for (size_t i = 0; i < bottom.size(); ++i)    {      // initialize all to default algorithms      fwd_algo_[i] = (cudnnConvolutionFwdAlgo_t)0;      bwd_filter_algo_[i] = (cudnnConvolutionBwdFilterAlgo_t)0;      bwd_data_algo_[i] = (cudnnConvolutionBwdDataAlgo_t)0;      // default algorithms don't require workspace      workspace_fwd_sizes_[i] = 0;      workspace_bwd_data_sizes_[i] = 0;      workspace_bwd_filter_sizes_[i] = 0;    }     for (int g = 0; g < this->group_ * CUDNN_STREAMS_PER_GROUP; g++)    {      CUDA_CHECK(cudaStreamCreate(&stream_[g]));      CUDNN_CHECK(cudnnCreate(&handle_[g]));      CUDNN_CHECK(cudnnSetStream(handle_[g], stream_[g]));      workspace[g] = NULL;    }     // Set the indexing parameters.    bias_offset_ = (this->num_output_ / this->group_);     // Create filter descriptor.    const int *kernel_shape_data = this->kernel_shape_.cpu_data();    const int kernel_h = kernel_shape_data[0];    const int kernel_w = kernel_shape_data[1];    cudnn::createFilterDesc<Dtype>(&filter_desc_,                                   this->num_output_ / this->group_, this->channels_ / this->group_,                                   kernel_h, kernel_w);     // Create tensor descriptor(s) for data and corresponding convolution(s).    for (int i = 0; i < bottom.size(); i++)    {      cudnnTensorDescriptor_t bottom_desc;      cudnn::createTensor4dDesc<Dtype>(&bottom_desc);      bottom_descs_.push_back(bottom_desc);      cudnnTensorDescriptor_t top_desc;      cudnn::createTensor4dDesc<Dtype>(&top_desc);      top_descs_.push_back(top_desc);      cudnnConvolutionDescriptor_t conv_desc;      cudnn::createConvolutionDesc<Dtype>(&conv_desc);      conv_descs_.push_back(conv_desc);    }     // Tensor descriptor for bias.    if (this->bias_term_)    {      cudnn::createTensor4dDesc<Dtype>(&bias_desc_);    }     handles_setup_ = true;  }   template <typename Dtype>  void CuDNNConvolutionLayer<Dtype>::Reshape(      const vector<Blob<Dtype> *> &bottom, const vector<Blob<Dtype> *> &top)  {    ConvolutionLayer<Dtype>::Reshape(bottom, top);    CHECK_EQ(2, this->num_spatial_axes_)        << "CuDNNConvolution input must have 2 spatial axes "        << "(e.g., height and width). "        << "Use 'engine: CAFFE' for general ND convolution.";    bottom_offset_ = this->bottom_dim_ / this->group_;    top_offset_ = this->top_dim_ / this->group_;    const int height = bottom[0]->shape(this->channel_axis_ + 1);    const int width = bottom[0]->shape(this->channel_axis_ + 2);    const int height_out = top[0]->shape(this->channel_axis_ + 1);    const int width_out = top[0]->shape(this->channel_axis_ + 2);    const int *pad_data = this->pad_.cpu_data();    const int pad_h = pad_data[0];    const int pad_w = pad_data[1];    const int *stride_data = this->stride_.cpu_data();    const int stride_h = stride_data[0];    const int stride_w = stride_data[1];#if CUDNN_VERSION_MIN(8, 0, 0)    int RetCnt;    bool found_conv_algorithm;    size_t free_memory, total_memory;    cudnnConvolutionFwdAlgoPerf_t fwd_algo_pref_[4];    cudnnConvolutionBwdDataAlgoPerf_t bwd_data_algo_pref_[4];     // get memory sizes    cudaMemGetInfo(&free_memory, &total_memory);#else    // Specify workspace limit for kernels directly until we have a    // planning strategy and a rewrite of Caffe's GPU memory mangagement    size_t workspace_limit_bytes = 8 * 1024 * 1024;#endif    for (int i = 0; i < bottom.size(); i++)    {      cudnn::setTensor4dDesc<Dtype>(&bottom_descs_[i],                                    this->num_,                                    this->channels_ / this->group_, height, width,                                    this->channels_ * height * width,                                    height * width, width, 1);      cudnn::setTensor4dDesc<Dtype>(&top_descs_[i],                                    this->num_,                                    this->num_output_ / this->group_, height_out, width_out,                                    this->num_output_ * this->out_spatial_dim_,                                    this->out_spatial_dim_, width_out, 1);      cudnn::setConvolutionDesc<Dtype>(&conv_descs_[i], bottom_descs_[i],                                       filter_desc_, pad_h, pad_w,                                       stride_h, stride_w); #if CUDNN_VERSION_MIN(8, 0, 0)      // choose forward algorithm for filter      // in forward filter the CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED is not implemented in cuDNN 8      CUDNN_CHECK(cudnnGetConvolutionForwardAlgorithm_v7(handle_[0],                                                         bottom_descs_[i],                                                         filter_desc_,                                                         conv_descs_[i],                                                         top_descs_[i],                                                         4,                                                         &RetCnt,                                                         fwd_algo_pref_));       found_conv_algorithm = false;      for (int n = 0; n < RetCnt; n++)      {        if (fwd_algo_pref_[n].status == CUDNN_STATUS_SUCCESS &&            fwd_algo_pref_[n].algo != CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED &&            fwd_algo_pref_[n].memory < free_memory)        {          found_conv_algorithm = true;          fwd_algo_[i] = fwd_algo_pref_[n].algo;          workspace_fwd_sizes_[i] = fwd_algo_pref_[n].memory;          break;        }      }      if (!found_conv_algorithm)        LOG(ERROR) << "cuDNN did not return a suitable algorithm for convolution.";      else      {        // choose backward algorithm for filter        // for better or worse, just a fixed constant due to the missing        // cudnnGetConvolutionBackwardFilterAlgorithm in cuDNN version 8.0        bwd_filter_algo_[i] = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0;        // twice the amount of the forward search to be save        workspace_bwd_filter_sizes_[i] = 2 * workspace_fwd_sizes_[i];      }       // choose backward algo for data      CUDNN_CHECK(cudnnGetConvolutionBackwardDataAlgorithm_v7(handle_[0],                                                              filter_desc_,                                                              top_descs_[i],                                                              conv_descs_[i],                                                              bottom_descs_[i],                                                              4,                                                              &RetCnt,                                                              bwd_data_algo_pref_));       found_conv_algorithm = false;      for (int n = 0; n < RetCnt; n++)      {        if (bwd_data_algo_pref_[n].status == CUDNN_STATUS_SUCCESS &&            bwd_data_algo_pref_[n].algo != CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD &&            bwd_data_algo_pref_[n].algo != CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED &&            bwd_data_algo_pref_[n].memory < free_memory)        {          found_conv_algorithm = true;          bwd_data_algo_[i] = bwd_data_algo_pref_[n].algo;          workspace_bwd_data_sizes_[i] = bwd_data_algo_pref_[n].memory;          break;        }      }      if (!found_conv_algorithm)        LOG(ERROR) << "cuDNN did not return a suitable algorithm for convolution.";#else      // choose forward and backward algorithms + workspace(s)      CUDNN_CHECK(cudnnGetConvolutionForwardAlgorithm(handle_[0],                                                      bottom_descs_[i],                                                      filter_desc_,                                                      conv_descs_[i],                                                      top_descs_[i],                                                      CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,                                                      workspace_limit_bytes,                                                      &fwd_algo_[i]));       CUDNN_CHECK(cudnnGetConvolutionForwardWorkspaceSize(handle_[0],                                                          bottom_descs_[i],                                                          filter_desc_,                                                          conv_descs_[i],                                                          top_descs_[i],                                                          fwd_algo_[i],                                                          &(workspace_fwd_sizes_[i])));       // choose backward algorithm for filter      CUDNN_CHECK(cudnnGetConvolutionBackwardFilterAlgorithm(handle_[0],                                                             bottom_descs_[i], top_descs_[i], conv_descs_[i], filter_desc_,                                                             CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,                                                             workspace_limit_bytes, &bwd_filter_algo_[i]));       // get workspace for backwards filter algorithm      CUDNN_CHECK(cudnnGetConvolutionBackwardFilterWorkspaceSize(handle_[0],                                                                 bottom_descs_[i], top_descs_[i], conv_descs_[i], filter_desc_,                                                                 bwd_filter_algo_[i], &workspace_bwd_filter_sizes_[i]));       // choose backward algo for data      CUDNN_CHECK(cudnnGetConvolutionBackwardDataAlgorithm(handle_[0],                                                           filter_desc_, top_descs_[i], conv_descs_[i], bottom_descs_[i],                                                           CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,                                                           workspace_limit_bytes, &bwd_data_algo_[i]));       // get workspace size      CUDNN_CHECK(cudnnGetConvolutionBackwardDataWorkspaceSize(handle_[0],                                                               filter_desc_, top_descs_[i], conv_descs_[i], bottom_descs_[i],                                                               bwd_data_algo_[i], &workspace_bwd_data_sizes_[i]));#endif    }    // reduce over all workspace sizes to get a maximum to allocate / reallocate    size_t total_workspace_fwd = 0;    size_t total_workspace_bwd_data = 0;    size_t total_workspace_bwd_filter = 0;     for (size_t i = 0; i < bottom.size(); i++)    {      total_workspace_fwd = std::max(total_workspace_fwd,                                     workspace_fwd_sizes_[i]);      total_workspace_bwd_data = std::max(total_workspace_bwd_data,                                          workspace_bwd_data_sizes_[i]);      total_workspace_bwd_filter = std::max(total_workspace_bwd_filter,                                            workspace_bwd_filter_sizes_[i]);    }    // get max over all operations    size_t max_workspace = std::max(total_workspace_fwd,                                    total_workspace_bwd_data);    max_workspace = std::max(max_workspace, total_workspace_bwd_filter);    // ensure all groups have enough workspace    size_t total_max_workspace = max_workspace *                                 (this->group_ * CUDNN_STREAMS_PER_GROUP);     // this is the total amount of storage needed over all groups + streams    if (total_max_workspace > workspaceSizeInBytes)    {      DLOG(INFO) << "Reallocating workspace storage: " << total_max_workspace;      workspaceSizeInBytes = total_max_workspace;       // free the existing workspace and allocate a new (larger) one      cudaFree(this->workspaceData);       cudaError_t err = cudaMalloc(&(this->workspaceData), workspaceSizeInBytes);      if (err != cudaSuccess)      {        // force zero memory path        for (int i = 0; i < bottom.size(); i++)        {          workspace_fwd_sizes_[i] = 0;          workspace_bwd_filter_sizes_[i] = 0;          workspace_bwd_data_sizes_[i] = 0;          fwd_algo_[i] = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM;          bwd_filter_algo_[i] = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0;          bwd_data_algo_[i] = CUDNN_CONVOLUTION_BWD_DATA_ALGO_0;        }         // NULL out all workspace pointers        for (int g = 0; g < (this->group_ * CUDNN_STREAMS_PER_GROUP); g++)        {          workspace[g] = NULL;        }        // NULL out underlying data        workspaceData = NULL;        workspaceSizeInBytes = 0;      }       // if we succeed in the allocation, set pointer aliases for workspaces      for (int g = 0; g < (this->group_ * CUDNN_STREAMS_PER_GROUP); g++)      {        workspace[g] = reinterpret_cast<char *>(workspaceData) + g * max_workspace;      }    }     // Tensor descriptor for bias.    if (this->bias_term_)    {      cudnn::setTensor4dDesc<Dtype>(&bias_desc_,                                    1, this->num_output_ / this->group_, 1, 1);    }  }   template <typename Dtype>  CuDNNConvolutionLayer<Dtype>::~CuDNNConvolutionLayer()  {    // Check that handles have been setup before destroying.    if (!handles_setup_)    {      return;    }     for (int i = 0; i < bottom_descs_.size(); i++)    {      cudnnDestroyTensorDescriptor(bottom_descs_[i]);      cudnnDestroyTensorDescriptor(top_descs_[i]);      cudnnDestroyConvolutionDescriptor(conv_descs_[i]);    }    if (this->bias_term_)    {      cudnnDestroyTensorDescriptor(bias_desc_);    }    cudnnDestroyFilterDescriptor(filter_desc_);     for (int g = 0; g < this->group_ * CUDNN_STREAMS_PER_GROUP; g++)    {      cudaStreamDestroy(stream_[g]);      cudnnDestroy(handle_[g]);    }     cudaFree(workspaceData);    delete[] stream_;    delete[] handle_;    delete[] fwd_algo_;    delete[] bwd_filter_algo_;    delete[] bwd_data_algo_;    delete[] workspace_fwd_sizes_;    delete[] workspace_bwd_data_sizes_;    delete[] workspace_bwd_filter_sizes_;  }   INSTANTIATE_CLASS(CuDNNConvolutionLayer); } // namespace caffe#endif
/** * @File Name : cudnn_deconv_layer.cpp */ #ifdef USE_CUDNN#include <algorithm>#include <vector> #include "caffe/layers/cudnn_deconv_layer.hpp" namespace caffe{ // Set to three for the benefit of the backward pass, which// can use separate streams for calculating the gradient w.r.t.// bias, filter weights, and bottom data for each group independently#define CUDNN_STREAMS_PER_GROUP 3   /**   * TODO(dox) explain cuDNN interface   */  template <typename Dtype>  void CuDNNDeconvolutionLayer<Dtype>::LayerSetUp(      const vector<Blob<Dtype> *> &bottom, const vector<Blob<Dtype> *> &top)  {    DeconvolutionLayer<Dtype>::LayerSetUp(bottom, top);    // Initialize CUDA streams and cuDNN.    stream_ = new cudaStream_t[this->group_ * CUDNN_STREAMS_PER_GROUP];    handle_ = new cudnnHandle_t[this->group_ * CUDNN_STREAMS_PER_GROUP];     // Initialize algorithm arrays    fwd_algo_ = new cudnnConvolutionFwdAlgo_t[bottom.size()];    bwd_filter_algo_ = new cudnnConvolutionBwdFilterAlgo_t[bottom.size()];    bwd_data_algo_ = new cudnnConvolutionBwdDataAlgo_t[bottom.size()];     // initialize size arrays    workspace_fwd_sizes_ = new size_t[bottom.size()];    workspace_bwd_filter_sizes_ = new size_t[bottom.size()];    workspace_bwd_data_sizes_ = new size_t[bottom.size()];     // workspace data    workspaceSizeInBytes = 0;    workspaceData = NULL;    workspace = new void *[this->group_ * CUDNN_STREAMS_PER_GROUP];     for (size_t i = 0; i < bottom.size(); ++i)    {      // initialize all to default algorithms      fwd_algo_[i] = (cudnnConvolutionFwdAlgo_t)0;      bwd_filter_algo_[i] = (cudnnConvolutionBwdFilterAlgo_t)0;      bwd_data_algo_[i] = (cudnnConvolutionBwdDataAlgo_t)0;      // default algorithms don't require workspace      workspace_fwd_sizes_[i] = 0;      workspace_bwd_data_sizes_[i] = 0;      workspace_bwd_filter_sizes_[i] = 0;    }     for (int g = 0; g < this->group_ * CUDNN_STREAMS_PER_GROUP; g++)    {      CUDA_CHECK(cudaStreamCreate(&stream_[g]));      CUDNN_CHECK(cudnnCreate(&handle_[g]));      CUDNN_CHECK(cudnnSetStream(handle_[g], stream_[g]));      workspace[g] = NULL;    }     // Set the indexing parameters.    bias_offset_ = (this->num_output_ / this->group_);     // Create filter descriptor.    const int *kernel_shape_data = this->kernel_shape_.cpu_data();    const int kernel_h = kernel_shape_data[0];    const int kernel_w = kernel_shape_data[1];    cudnn::createFilterDesc<Dtype>(&filter_desc_,                                   this->channels_ / this->group_,                                   this->num_output_ / this->group_,                                   kernel_h,                                   kernel_w);     // Create tensor descriptor(s) for data and corresponding convolution(s).    for (int i = 0; i < bottom.size(); i++)    {      cudnnTensorDescriptor_t bottom_desc;      cudnn::createTensor4dDesc<Dtype>(&bottom_desc);      bottom_descs_.push_back(bottom_desc);      cudnnTensorDescriptor_t top_desc;      cudnn::createTensor4dDesc<Dtype>(&top_desc);      top_descs_.push_back(top_desc);      cudnnConvolutionDescriptor_t conv_desc;      cudnn::createConvolutionDesc<Dtype>(&conv_desc);      conv_descs_.push_back(conv_desc);    }     // Tensor descriptor for bias.    if (this->bias_term_)    {      cudnn::createTensor4dDesc<Dtype>(&bias_desc_);    }     handles_setup_ = true;  }   template <typename Dtype>  void CuDNNDeconvolutionLayer<Dtype>::Reshape(      const vector<Blob<Dtype> *> &bottom, const vector<Blob<Dtype> *> &top)  {    DeconvolutionLayer<Dtype>::Reshape(bottom, top);    CHECK_EQ(2, this->num_spatial_axes_)        << "CuDNNDeconvolutionLayer input must have 2 spatial axes "        << "(e.g., height and width). "        << "Use 'engine: CAFFE' for general ND convolution.";    bottom_offset_ = this->bottom_dim_ / this->group_;    top_offset_ = this->top_dim_ / this->group_;    const int height = bottom[0]->shape(this->channel_axis_ + 1);    const int width = bottom[0]->shape(this->channel_axis_ + 2);    const int height_out = top[0]->shape(this->channel_axis_ + 1);    const int width_out = top[0]->shape(this->channel_axis_ + 2);    const int *pad_data = this->pad_.cpu_data();    const int pad_h = pad_data[0];    const int pad_w = pad_data[1];    const int *stride_data = this->stride_.cpu_data();    const int stride_h = stride_data[0];    const int stride_w = stride_data[1];#if CUDNN_VERSION_MIN(8, 0, 0)    int RetCnt;    bool found_conv_algorithm;    size_t free_memory, total_memory;    cudnnConvolutionFwdAlgoPerf_t fwd_algo_pref_[4];    cudnnConvolutionBwdDataAlgoPerf_t bwd_data_algo_pref_[4];     // get memory sizes    cudaMemGetInfo(&free_memory, &total_memory);#else    // Specify workspace limit for kernels directly until we have a    // planning strategy and a rewrite of Caffe's GPU memory mangagement    size_t workspace_limit_bytes = 8 * 1024 * 1024;#endif    for (int i = 0; i < bottom.size(); i++)    {      cudnn::setTensor4dDesc<Dtype>(&bottom_descs_[i],                                    this->num_,                                    this->channels_ / this->group_,                                    height,                                    width,                                    this->channels_ * height * width,                                    height * width,                                    width,                                    1);      cudnn::setTensor4dDesc<Dtype>(&top_descs_[i],                                    this->num_,                                    this->num_output_ / this->group_,                                    height_out,                                    width_out,                                    this->num_output_ * height_out * width_out,                                    height_out * width_out,                                    width_out,                                    1);      cudnn::setConvolutionDesc<Dtype>(&conv_descs_[i],                                       top_descs_[i],                                       filter_desc_,                                       pad_h,                                       pad_w,                                       stride_h,                                       stride_w); #if CUDNN_VERSION_MIN(8, 0, 0)      // choose forward algorithm for filter      // in forward filter the CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED is not implemented in cuDNN 8      CUDNN_CHECK(cudnnGetConvolutionForwardAlgorithm_v7(handle_[0],                                                         top_descs_[i],                                                         filter_desc_,                                                         conv_descs_[i],                                                         bottom_descs_[i],                                                         4,                                                         &RetCnt,                                                         fwd_algo_pref_));       found_conv_algorithm = false;      for (int n = 0; n < RetCnt; n++)      {        if (fwd_algo_pref_[n].status == CUDNN_STATUS_SUCCESS &&            fwd_algo_pref_[n].algo != CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED &&            fwd_algo_pref_[n].memory < free_memory)        {          found_conv_algorithm = true;          fwd_algo_[i] = fwd_algo_pref_[n].algo;          workspace_fwd_sizes_[i] = fwd_algo_pref_[n].memory;          break;        }      }      if (!found_conv_algorithm)        LOG(ERROR) << "cuDNN did not return a suitable algorithm for convolution.";      else      {        // choose backward algorithm for filter        // for better or worse, just a fixed constant due to the missing        // cudnnGetConvolutionBackwardFilterAlgorithm in cuDNN version 8.0        bwd_filter_algo_[i] = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0;        // twice the amount of the forward search to be save        workspace_bwd_filter_sizes_[i] = 2 * workspace_fwd_sizes_[i];      }       // choose backward algo for data      CUDNN_CHECK(cudnnGetConvolutionBackwardDataAlgorithm_v7(handle_[0],                                                              filter_desc_,                                                              bottom_descs_[i],                                                              conv_descs_[i],                                                              top_descs_[i],                                                              4,                                                              &RetCnt,                                                              bwd_data_algo_pref_));       found_conv_algorithm = false;      for (int n = 0; n < RetCnt; n++)      {        if (bwd_data_algo_pref_[n].status == CUDNN_STATUS_SUCCESS &&            bwd_data_algo_pref_[n].algo != CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD &&            bwd_data_algo_pref_[n].algo != CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED &&            bwd_data_algo_pref_[n].memory < free_memory)        {          found_conv_algorithm = true;          bwd_data_algo_[i] = bwd_data_algo_pref_[n].algo;          workspace_bwd_data_sizes_[i] = bwd_data_algo_pref_[n].memory;          break;        }      }      if (!found_conv_algorithm)        LOG(ERROR) << "cuDNN did not return a suitable algorithm for convolution.";#else      // choose forward and backward algorithms + workspace(s)      CUDNN_CHECK(cudnnGetConvolutionForwardAlgorithm(          handle_[0],          top_descs_[i],          filter_desc_,          conv_descs_[i],          bottom_descs_[i],          CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,          workspace_limit_bytes,          &fwd_algo_[i]));       // We have found that CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM is      // buggy. Thus, if this algo was chosen, choose winograd instead. If      // winograd is not supported or workspace is larger than threshold, choose      // implicit_gemm instead.      if (fwd_algo_[i] == CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM)      {        size_t winograd_workspace_size;        cudnnStatus_t status = cudnnGetConvolutionForwardWorkspaceSize(            handle_[0],            top_descs_[i],            filter_desc_,            conv_descs_[i],            bottom_descs_[i],            CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD,            &winograd_workspace_size);        if (status != CUDNN_STATUS_SUCCESS ||            winograd_workspace_size >= workspace_limit_bytes)        {          fwd_algo_[i] = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM;        }        else        {          fwd_algo_[i] = CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD;        }      }       CUDNN_CHECK(cudnnGetConvolutionForwardWorkspaceSize(          handle_[0],          top_descs_[i],          filter_desc_,          conv_descs_[i],          bottom_descs_[i],          fwd_algo_[i],          &(workspace_fwd_sizes_[i])));       // choose backward algorithm for filter      CUDNN_CHECK(cudnnGetConvolutionBackwardFilterAlgorithm(          handle_[0],          top_descs_[i],          bottom_descs_[i],          conv_descs_[i],          filter_desc_,          CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,          workspace_limit_bytes,          &bwd_filter_algo_[i]));       // get workspace for backwards filter algorithm      CUDNN_CHECK(cudnnGetConvolutionBackwardFilterWorkspaceSize(          handle_[0],          top_descs_[i],          bottom_descs_[i],          conv_descs_[i],          filter_desc_,          bwd_filter_algo_[i],          &workspace_bwd_filter_sizes_[i]));       // choose backward algo for data      CUDNN_CHECK(cudnnGetConvolutionBackwardDataAlgorithm(          handle_[0],          filter_desc_,          bottom_descs_[i],          conv_descs_[i],          top_descs_[i],          CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,          workspace_limit_bytes,          &bwd_data_algo_[i]));       // get workspace size      CUDNN_CHECK(cudnnGetConvolutionBackwardDataWorkspaceSize(          handle_[0],          filter_desc_,          bottom_descs_[i],          conv_descs_[i],          top_descs_[i],          bwd_data_algo_[i],          &workspace_bwd_data_sizes_[i]));#endif    }     // reduce over all workspace sizes to get a maximum to allocate / reallocate    size_t total_workspace_fwd = 0;    size_t total_workspace_bwd_data = 0;    size_t total_workspace_bwd_filter = 0;     for (size_t i = 0; i < bottom.size(); i++)    {      total_workspace_fwd = std::max(total_workspace_fwd,                                     workspace_fwd_sizes_[i]);      total_workspace_bwd_data = std::max(total_workspace_bwd_data,                                          workspace_bwd_data_sizes_[i]);      total_workspace_bwd_filter = std::max(total_workspace_bwd_filter,                                            workspace_bwd_filter_sizes_[i]);    }    // get max over all operations    size_t max_workspace = std::max(total_workspace_fwd,                                    total_workspace_bwd_data);    max_workspace = std::max(max_workspace, total_workspace_bwd_filter);    // ensure all groups have enough workspace    size_t total_max_workspace = max_workspace *                                 (this->group_ * CUDNN_STREAMS_PER_GROUP);     // this is the total amount of storage needed over all groups + streams    if (total_max_workspace > workspaceSizeInBytes)    {      DLOG(INFO) << "Reallocating workspace storage: " << total_max_workspace;      workspaceSizeInBytes = total_max_workspace;       // free the existing workspace and allocate a new (larger) one      cudaFree(this->workspaceData);       cudaError_t err = cudaMalloc(&(this->workspaceData), workspaceSizeInBytes);      if (err != cudaSuccess)      {        // force zero memory path        for (int i = 0; i < bottom.size(); i++)        {          workspace_fwd_sizes_[i] = 0;          workspace_bwd_filter_sizes_[i] = 0;          workspace_bwd_data_sizes_[i] = 0;          fwd_algo_[i] = CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING;          bwd_filter_algo_[i] = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0;          bwd_data_algo_[i] = CUDNN_CONVOLUTION_BWD_DATA_ALGO_0;        }         // NULL out all workspace pointers        for (int g = 0; g < (this->group_ * CUDNN_STREAMS_PER_GROUP); g++)        {          workspace[g] = NULL;        }        // NULL out underlying data        workspaceData = NULL;        workspaceSizeInBytes = 0;      }       // if we succeed in the allocation, set pointer aliases for workspaces      for (int g = 0; g < (this->group_ * CUDNN_STREAMS_PER_GROUP); g++)      {        workspace[g] = reinterpret_cast<char *>(workspaceData) + g * max_workspace;      }    }     // Tensor descriptor for bias.    if (this->bias_term_)    {      cudnn::setTensor4dDesc<Dtype>(          &bias_desc_, 1, this->num_output_ / this->group_, 1, 1);    }  }   template <typename Dtype>  CuDNNDeconvolutionLayer<Dtype>::~CuDNNDeconvolutionLayer()  {    // Check that handles have been setup before destroying.    if (!handles_setup_)    {      return;    }     for (int i = 0; i < bottom_descs_.size(); i++)    {      cudnnDestroyTensorDescriptor(bottom_descs_[i]);      cudnnDestroyTensorDescriptor(top_descs_[i]);      cudnnDestroyConvolutionDescriptor(conv_descs_[i]);    }    if (this->bias_term_)    {      cudnnDestroyTensorDescriptor(bias_desc_);    }    cudnnDestroyFilterDescriptor(filter_desc_);     for (int g = 0; g < this->group_ * CUDNN_STREAMS_PER_GROUP; g++)    {      cudaStreamDestroy(stream_[g]);      cudnnDestroy(handle_[g]);    }     cudaFree(workspaceData);    delete[] workspace;    delete[] stream_;    delete[] handle_;    delete[] fwd_algo_;    delete[] bwd_filter_algo_;    delete[] bwd_data_algo_;    delete[] workspace_fwd_sizes_;    delete[] workspace_bwd_data_sizes_;    delete[] workspace_bwd_filter_sizes_;  }   INSTANTIATE_CLASS(CuDNNDeconvolutionLayer); } // namespace caffe#endif

由于cuDNN对代码进行了改版,在cudnn.h文件中不再指出cudnn的版本号,而是放在了cudnn_version.h文件中,所以,将cudnn_version.h中对于版本段的代码复制到cudnn.h文件中,代码如下:

locate cudnn_version.h
sudo gedit /usr/local/cuda/targets/x86_64-linux/include/cudnn_version.h

d02f7f01b16e41a1a5528d664a6623f2

复制其中的非注释部分:

841eda431c924b86bd9b14cc93472420

sudo gedit /usr/local/cuda/targets/x86_64-linux/include/cudnn.h

粘贴到最开头:

828bd6d08d3c4c8990d2227e667cfc98

然后打开caffe包下的cudnn.hpp文件并指定cudnn.h路径:

8a8df47d267a4f35a0e641ea1e4057c4

之后重新执行编译:

sudo make clean && make all -j$(nproc)

生成以下静态库和共享库文件:

a97e353858cb415487b0c511e20a3d8e

测试,时间较慢,耐心等待~

sudo make test -j$(nproc)
sudo make runtest -j$(nproc)
sudo make pycaffe -j$(nproc)

可能会有报错,但问题不大,我们只是需要那些库文件~

24-安装libfreenect2

git clone https://gitcode.com/mirrors/OpenKinect/libfreenect2.git
cd libfreenect2 && mkdir build && cd build/
cmake -j$(nproc) .. -DENABLE_CXX11=ON
sudo make -j$(nproc)

6cadc0a213e2406ba85889e9723ad7c6

sudo make install

472362d895074bb6bfe40f6ca40a91f8

sudo cp ../platform/linux/udev/90-kinect2.rules /etc/udev/rules.d/

25-安装vtk8.2.0及PCL1.9.1

https://vtk.org/download/

下载VTK-8.2.0.zip

6895bcbb15424c2db7b82265cd3873d5

解压之后,进入文件夹打开终端:

sudo apt install cmake-gui && mkdir build && cd  build && cmake-gui

19c7fca7f8e745cd8f97283961027dbb

单击Configure后勾选以下两项后单击Configure和Generate

5889f9e275ba4d33a6506a89ee9e00e9

20fd96ee42a5447f9715388b48670d2b

sudo make -j$(nproc)

fd63a2d3317447d5b982c5a1c6defc59

sudo make install

image-20240206162428124

接下来安装pcl:

git clone -b pcl-1.9.1 https://gitcode.com/mirrors/PointCloudLibrary/pcl.git pcl-1.9.1

之后进入文件夹打开终端输入:

mkdir release && cd release
cmake -D CMAKE_BUILD_TYPE=None \-D CMAKE_INSTALL_PREFIX=/usr \-D BUILD_GPU=ON-DBUILD_apps=ON \-D BUILD_examples=ON \-D CMAKE_INSTALL_PREFIX=/usr \-j$(nproc) ..

d8596882117248859b7c3cb104b19d13

sudo make -j$(nproc)

8d1ac3a5ef5f417aa47abf5f5172ff1e

sudo make install

69d7d955c7f24ab4926dadd31dddfb04

26-安装CarlaUE4(必须是Carla的UE仓库里的carla分支才可以通过安装Carla时的编译)

find . -name "*.sh" -exec dos2unix {} +
find . -name "*.sh" -exec chmod +x {} +
sudo chown -R m0rtzz: *

若报错:

2ea1050777ac49fbb8a0986e34d3140e

因Epic更新了gitdeps,但Github上却没有更新,所以需要进入Github官方仓库release界面寻找对应版本的Commit.gitdeps.xml替换原来的文件即可:

https://github.com/EpicGames/UnrealEngine/releases/tag

若报错:

a430a7833c97404cae877a549b6b2322

个人认为是因执行Setup.sh脚本未赋予root权限导致依赖未安装完整,所以再次执行:

sudo ./Setup.sh
// @file : CubemapUnwrapUtils.cpp// UseRHICmdList.GetBoundVertexShader() instead of GetVertexShader()RHICmdList.GetBoundPixelShader() instead of GetPixelShader()// Instead of the given macros, use code as below.GraphicsPSOInit.BoundShaderState.VertexShaderRHI = VertexShader.GetVertexShader();GraphicsPSOInit.BoundShaderState.PixelShaderRHI = PixelShader.GetPixelShader();

http://cdn.unrealengine.com/Toolchain_Linux/native-linux-v17_clang-10.0.10centos.tar.gz

cd your-path/UnrealEngine_4.26/Engine/Extras/ThirdPartyNotUE/SDKs/HostLinux/Linux_x64/
tar -zxvf native-linux-v17_clang-10.0.1-centos7.tar.gz

27-安装Carla0.9.13(添加fisheye sensor模块)

修改Update.sh下载网址为南方科技大学镜像站的网址:

#CONTENT_LINK=http://carla-assets.s3.amazonaws.com/${CONTENT_ID}.tar.gzCONTENT_LINK=https://mirrors.sustech.edu.cn/carla/carla_content/${CONTENT_ID}.tar.gz
// @file : test_streaming.cpp // Line 58carla::streaming::low_level::Server<tcp::Server> srv(io.service, TESTING_PORT); // Line 63carla::streaming::low_level::Client<tcp::Client> c; // Line 93carla::streaming::low_level::Server<tcp::Server> srv(io.service, TESTING_PORT); // Line 96carla::streaming::low_level::Client<tcp::Client> c;
# @file : Package.sh(https://github.com/annaornatskaya/carla/tree/fisheye-sensor)   # copy_if_changed "./Plugins/" "${DESTINATION}/Plugins/"   copy_if_changed "./Unreal/CarlaUE4/Content/Carla/HDMaps/*.pcd" "${DESTINATION}/HDMaps/"  copy_if_changed "./Unreal/CarlaUE4/Content/Carla/HDMaps/Readme.md" "${DESTINATION}/HDMaps/README"   # NOTE: Modified by M0rtzz  if [ -d "./Plugins/" ] ; then    copy_if_changed "./Plugins/" "${DESTINATION}/Plugins/"  fi

28-P.S:

推荐一些linux办公常用的软件(linux版,不包括wine环境下,全部下载deb格式的安装包,系统架构可通过命令uname -a查看):

百度网盘 客户端下载

向日葵远程控制app官方下载 - 贝锐向日葵官网

QQ Linux版-新不止步·乐不设限

下载中心-腾讯会议

WPS Office 2019 for Linux-支持多版本下载_WPS官方网站

搜狗输入法-首页(下载安装包后,官方会跳转至安装教程,严格按照步骤执行)

Documentation for Visual Studio Code(推荐打开Settings Sync,换电脑时设置可以同步)

195197efec704c98ba8f61ecc4c8370a.png

bd3b7b33a2744c5cb67011223648eabf.png

可以水平和垂直分割的bash终端:

sudo apt install terminator

74c734b7ca9e4cc5a68246b4f8a73ee3.png

trash命令:

sudo apt install trash-cli

tree命令:

sudo apt install tree

5434b41e73244f8f941b795586faaea2.png

c344c03378a74cdca9e9585f3c3c14d8.png

查看系统信息:

sudo apt install neofetch

e86107d0003945a98d5335abf87680b4.png

rar文件解压工具:

sudo apt install unrar

解决不能观看MP4文件:

sudo apt update
sudo apt install libdvdnav4 libdvdread4 gstreamer1.0-plugins-bad gstreamer1.0-plugins-ugly libdvd-pkg
sudo apt install ubuntu-restricted-extras
sudo dpkg-reconfigure libdvd-pkg

系统优化:

sudo apt update
sudo apt install gnome-tweak-tool

image-20240206162428124

火狐浏览器优化:

地址栏输入:

about:config

4700bc61b15141609ce55f97e9334034

full-screen-api.warning.timeout

设置为0~

full-screen-api.transition-duration.enter

full-screen-api.transition-duration.leave

都设置为0 0~

browser.search.openintab
browser.urlbar.openintab
browser.tabs.loadBookmarksInTabs

都设置为true~